99

Ромбический кристалл Gd₂(MoO₄)₃ – – новый нелинейный лазерный материал для эффективной генерации второй гармоники

А.А.Каминский^{*}, Г.Эйхлер^{***}, С.Н.Багаев^{**}, Д.Гребе^{***}, Р.Макдональд^{***}, А.В.Буташин^{*}, А.А.Павлюк^{****}, Ф.А.Кузнецов^{****}

Обнаружены новые нелинейные свойства ромбического кристалла $Gd_2(MoO_4)_3$. При 300 К получена эффективная (~30%) внерезонаторная генерация второй гармоники при накачке мощными нано- и пикоскундными лазерами с $\lambda = 1.064$ мкм.

Ромбический молибдат гадолиния давно известен как сегнетоэлектрический и сегнетоупругий материал и достаточно широко используется в технике и физическом эксперименте. Он также является хорошей матрицей для трехвалентных ионов лантаноидов, в том числе генерирующих (Nd³⁺) [1]. Характеристики импульсного стимулированного излучения кристаллов Gd₂(MoO₄)₃Nd³⁺ впервые исследованы в работе [2], а в [3] на их основе созданы непрерывные и квазинепрерывные лазеры (канал генерации ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$) с полупроводниковой лазерной накачкой. В работе [4] сообщается о том, что в неактивированных кристаллах Gd₂(MoO₄)₃ было возбуждено в видимом диапазоне длин волн коллинеарное многокаскадное (вплоть до 4-й стоксовой компоненты) ВКР и обнаружены другие проявления нелинейно-оптических взаимодействий, например «лазерная» радуга и самоканалирование – образование нитей самофокусировки, которые обычно наблюдаются при большой интенсивности накачки в кристаллах с высокой кубической нелинейной восприимчивостью $\chi^{(3)}$ (см., напр., [5]). В настоящей работе мы обнаружили, что ацентричные кристаллы Gd₂(MoO₄)₃ обладают значительной квадратичой нелинейной восприимчивостью χ⁽²⁾ и с высокой эффективностью преобразовывают излучение с $\lambda = 1.064$ мкм импульсных неодимовых лазеров во вторую гармонику.

В опытах по генерации второй гармоники (ГВГ) использовались кристаллы Gd₂(MoO₄)₃ и Gd₂(MoO₄)₃: Nd³⁺, выращенные традиционным (из стехиометрического расплава) и модифицированным (низкоградиентным, из раствора в расплаве) методами Чохральского из Pt-тиглей. Последний способ обеспечивал как бо́льшие размеры кристаллов, так и их существенно лучшее оптическое качество. Исследуемые образцы представляли собой ориентированные параллелепипеды и пластины различной толщины с «рабочим» сечением в несколько квадратных сантиметров. Измерения проводились на длине волны излучения импульсно-периодических Y₃Al₅O₁₂: Nd³⁺-лазеров, один из которых – наносекундный лазер

****Оптический институт технического университета, Берлин

*****Институт неорганической химии СО РАН, Новосибирск

Поступило в редакцию 26 октября 1995 г.

ЛТИПЧ-7 с головкой ИЗ-25, а другой – лазер с двумя усилительными каскадами [6].

Использованные лазеры обеспечивали получение импульсов с длительностью ~20 нс и ~120 пс и энергией ~2 и ~10 мДж соответственно. Так, в однопроходной схеме с неактивированными кристаллами Gd₂(MoO₄)₃ во всех режимах измерения ГВГ при 300 К, в том числе и в несфокусированных пучках, было зарегистрировано эффективное преобразование одномикронного излучения в гармонику ($\lambda_h = 0.53207$ мкм). В частности, в далеко не оптимальных условиях опытов с пикосекундными импульсами с энергией, близкой к максимальной, в сфокусированном пучке (линза с F = 500 мм, диаметр перетяжки около 75 мкм) для образца Gd₂(MoO₄)₃ толщиной 8 мм была получена эффективность ГВГ около 30 %. Проведенные эксперименты позволили определить угол синхронизма $\theta_m = 75 \pm 5^\circ$. Большой разброс θ_m связан со специфической кристаллооптикой ромбического Gd₂(MoO₄)₃. Измерения, проведенные с Gd₂(MoO₄)₃: :Nd³⁺, показали, что поглощение активаторных ионов на длине волны гармоники (в спектральной области абсорбционного канала ${}^{4}I_{9/2} \rightarrow {}^{4}G_{7/2}$) несущественно уменьшает эффективность ГВГ, что указывает на возможность создания на основе этих кристаллов эффективных лазеров с самоумножением частоты генерации.

Ацентричные кристаллы Gd₂(MoO₄)₃ ниже температуры Кюри ($T_C \approx 159$ °C) имеют ромбическую структуру (пространственная группа $C_{2v}^8 - Pba2$, сегнетоэлектрическая β' -фаза), а выше T_C становятся тетрагональными ($D_{2d}^3 - P\bar{4}2_1m$, параэлектрическая β -фаза). Они прозрачны от ~0.3 до ~6 мкм, а их фононный спектр (по данным комбинационного рассеяния) простирается до ~970 см⁻¹. Ниже T_C эти кристаллы являются оптически положительными и двуосными (угол осей $2V \approx 10^\circ$ при 300 К) [1, 2, 4]. Возможно выращивание кристаллов Gd₂(MoO₄)₃ крупных размеров с высокой концентрацией ионов Nd³⁺.

Анализ показал, что в кристалле Gd₂(MoO₄)₃ может иметь место фазовый синхронизм первого типа ГВГ излучения Y₃Al₅O₁₂:Nd³⁺-лазеров с $\lambda = 1.064$ мкм, который должен осуществляться под углом $\theta_m \approx 74^\circ$ к его оси *с*. По известному тензору d_{ij} и соответствующему соотношению для двуосных ромбических кристаллов [7] мы рассчитали эффективный коэффициент оптической нелинейности: $d_{ef} \approx 1.4 \cdot 10^{-12}$ м/В в направлении синхронизма. По этому параметру кристалл Gd₂(MoO₄)₃ значительно превосходит известные крупноапертурные нелинейные

^{*}Институт кристаллографии им. А.В.Шубникова РАН, Москва **Институт лазерной физики СО РАН, Новосибирск

кристаллы KDP и DKDP и сопоставим с другим используемым в квантовой электронике нелинейным лазерным кристаллом $YAl_3(BO_3)_4$ [8], который также может быть выращен с большой концентрацией ионов Nd^{3+} , но размеры которого ограничены технологией изготовления.

Таким образом, открыт и изучен новый нелинейный лазерный кристалл $Gd_2(MoO_4)_3$ для эффективной ГВГ. Полученные результаты позволяют надеяться на то, что на основе ацентричного ромбического молибдата гадолиния могут быть созданы крупноапертурные (до сотен квадратных сантиметров) нелинейные преобразователи одномикронного ИК лазерного излучения ($Gd_2(MoO_4)_3$), а также лазеры с самоумножением частоты генерации ($Gd_2(MoO_4)_3$:Nd³⁺), в том числе и с полупроводниковой лазерной накачкой.

Работа выполнялась при частичной финансовой поддержке Российского фонда фундаментальных исследований, а также государственных программ «Фундаментальная метрология» и «Оптика. Лазерная физика». Все авторы также отмечают, что проведению исследований существенно способствовала их совместная кооперация в Объединенной открытой лаборатории «Лазерные кристаллы и прецизионные лазерные системы».

- 1. Borchardt H.J., Bierstedt P.E. Appl. Phys. Letts, 8, 50 (1966).
- Багдасаров Х.С., Каминский А.А., Богомолова Г.А., Прохоров А.М., Прохорцева Т.М. ДАН СССР, 197, 557 (1971).
- 3. Kaminskii A.A. Phys. Stat. Sol. A, 149, K39 (1995).
- Kaminskii A.A., Eichler H.J., Grebe D., Macdonald R., Bagayev S.N., Kuznetsov F.A., Pavlyuk A.A. *Phys. Stat. Sol. A* (1996) (в печати).
- Kaminskii A.A., Nishioka H., Kubota K., Takuma H., Bagayev S.N. Pavlyuk A.A. *Phys. Stat. Sol. A*, 148, 619 (1995).
- 6. Eichler H.J., Liu B. Opt. Mater., 1, 21 (1992).
- M.J.Weber (ed.). Handbook of laser science and technology (Boca Raton, CRC Press, vol.III, 1986).
- 8. Kaminskii A.A. *Crystalline lasers: physical processes and operating schemes* (Boca Raton, Ann Arbor, Boston, CRC Press, 1996).

A.A.Kaminskii, H.Eichler, S.N.Bagaev, D.Grebe, R.Macdonald, A.V.Butashin, A.A.Pavlyuk, F.A.Kuznetsov. Orthorhombic $Gd_2(MoO_4)_3$ crystal as a new nonlinear laser material for efficient second-harmonic generation.

New nonlinear properties of orthorhombic Gd₂(MoO₄)₃ crystals were discovered. At 300 K it was possible to achieve efficient (~30 %) extracavity second-harmonic generation by pumping with high-power nanosecond and picosecond laser pulses at $\lambda = 1.064 \ \mu m$.