ПИСЬМА В РЕДАКЦИЮ

Новые кристаллические лазеры одномикронного диапазона длин волн

А.А.Каминский*, С.Н.Багаев**, Л.Ли***, Ф.А.Кузнецов***, А.А.Павлюк***

Разработаны новые лазерные кристаллы на основе соединений калий-редкоземельных вольфраматов $KY(WO_4)_2$ и $KGd(WO_4)_2$ с ионами Pr^{3+} . При ламповой накачке и комнатной температуре получена низкопороговая импульсная и квазинепрерывная генерация стимулированного излучения в «неодимовом» диапазоне длин волн (1.06–1.07 мкм, генерационный канал $^1D_2 \rightarrow ^3F_4$).

В настоящее время основным активатором в лазерных диэлектрических кристаллах, способных генерировать низкопороговое стимулированное излучение (СИ) в диапазоне 1.06-1.07 мкм при комнатной температуре и различных способах накачки, является ион Nd³⁺ [1]. Его одномикронное СИ, возбуждающееся по четырехуровневой схеме на межштарковских переходах канала ${}^4F_{3/2} \rightarrow$ ⁴*I*_{11/2} с энергией конечного лазерного состояния около 2000 см⁻¹, лежит в основе работы большинства исследовательских и коммерческих неодимовых лазеров [2, 3]. К сожалению, структура энергетических уровней этого популярного активатора допускает возникновение каналов потерь, связанных с паразитным поглощением с уровней начального лазерного состояния ${}^{4}F_{3/2}$ как на частоте СИ, так и на частотах возбуждения, например в случае полупроводниковой лазерной ИК накачки. В кристаллических средах с непротяженным фононным спектром возможно также проявление нежелательного эффекта «узкого горла» в канале безызлучательной релаксации ⁴*I*_{11/2} → ⁴*I*_{9/2}. В связи с этим поиск новых кристаллических лазеров с эффективной генерацией в хорошо освоенном одномикронном диапазоне представляется в наши дни крайне актуальным.

Нами созданы новые лазерные кристаллы КY(WO₄)₂ и KGd(WO₄)₂, активированные ионами Pr³⁺, с крайне привлекательными для прикладных целей параметрами генерации в диапазоне 1.06-1.07 мкм. Это CИ соответствует межмультиплетному переходу ${}^{1}D_{2} \rightarrow {}^{3}F_{4}$ и возбуждается по четырехуровневой схеме с высоколежащим конечным лазерным состоянием ${}^{3}F_{4}$ (~7000 см⁻¹). Здесь важно отметить, что вследствие особенностей расположения энергетических уровней ионов Pr³⁺ данной одномикронной генерации не препятствуют нежелательные процессы, как это происходит для аналогичной «неодимовой» генерации в канале ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$.

Оптимальные условия для выращивания празеодимсодержащих кристаллов KY(WO₄)₂ и KGd(WO₄)₂ модифицированным (низкоградиентным) методом Чохральского были выявлены при исследовании фазовых диаг-

*Институт кристаллографии им. А.В.Шубникова РАН, Москва

***Институт неорганической химии СО РАН, Новосибирск

Поступило в редакцию 26 октября 1995 г.

рамм КҮ(WO₄)₂–КРг(WO₄)₂ и КGd(WO₄)₂–КРг(WO₄)₂. Кристаллы выращивались из раствора в расплаве К₂W₂O₇ в платиновом тигле на ориентированные по направлению [010] затравки при скорости вытягивания около 5 мм/сут. и скорости вращения 50–90 об./мин на разработанной нами установке с двухзонным нагревателем и прецизионнным регулированием температуры (\pm 0.1 °C). Из полученных буль КҮ(WO₄)₂ и KGd(WO₄)₂ с ионами Pr³⁺ (атомная концентрация $C_{\rm Pr} = 0.3 - 3$ %) высокого оптического качества для генерационных экспериментов были изготовлены кристаллические элементы в виде стержней длиной до 60 мм и диаметром 5.5 мм с полированной образующей.

Одномикронная генерация ионов Pr^{3+} в кристаллах КY(WO₄)₂ и KGd(WO₄)₂ при 300 К возбуждалась фильтрованным излучением импульсной Хе-лампы типа ИСП-250 в эффективном эллиптическом осветителе с использованием конфокального (R = 500 мм) лазерного резонатора, образованного интерференционными зеркалами с пропусканием на длине волне генерации около 0.3 %. Длительность импульса накачки в режиме свободной и квазинепрерывной генерации составляла ~ 50 мкс и 1.2 мс соответственно. На этом этапе исследований плоскопараллельные (~ 10 ″) торцы исследуемых кристаллов не имели просветляющего покрытия. Спектральный состав и параметры СИ изучались при помощи дифракционного монохроматора МДР-3 и осциллографической системы регистрации на основе лавинного фотодиода Ga-1M.

В нашем эксперименте генерация ионов Pr³⁺ легко вобуждалась на $\lambda_{se} = 1.0697$ мкм в KY(WO₄)₂ и на $\lambda_{se} =$ 1.0657 мкм в KGd(WO₄)₂, что соответствует волнам межштарковских переходов канала ${}^{1}D_{2} \rightarrow {}^{3}F_{4}$. Эти кристаллы с ориентацией вдоль направления [100] и с $C_{\rm Pr} = 2$ и 3 % имели импульсный порог возбуждения 0.7 и 0.4 Дж соответственно, а в квазинепрерывном режиме (при импульсном режиме с длительностью, превышающей более чем в 20 раз люминесцентное время жизни лазерного состояния ¹D₂) начинали устойчиво генерировать при средней пороговой мощности около 1 кВт. Для сравнения укажем, что в этих условиях возбуждения коммерческий кристалл KGd(WO₄)₂:Nd³⁺ (ориентация [010], $C_{Nd} =$ 2.5 %, длина 75 мм) в импульсном режиме генерировал при пороговой энергии 0.5 Дж ($\lambda_{se} = 1.0672$ мкм, канал ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$).

Низкотемпературная модификация соединений

PACS 42.70.Hj; 42.55.Rz

^{**}Институт лазерной физики СО РАН, Новосибирск

КҮ(WO₄)₂ и KGd(WO₄)₂ кристаллизуется в моноклинной сингонии с пространственной группой $C_{2h}^6 - C 2/c$ (I2/c). Ионы Pr^{3+} , замещающие в кристаллах редкоземельные катионы в позициях с локальной симметрией C_1 , образуют один тип активаторных центров. Отметим здесь также некоторые физические свойства этих кристаллов: их твердость близка к 5 (по шкале Мооса), температура плавления составляет около 1050 °C, теплопроводность равна примерно 0.03 Вт/см К. Оптическая прозрачность кристаллов КҮ(WO₄)₂ и KGd(WO₄)₂ простирается от ~ 0.34 до ~ 5.5 мкм (при толщине слоя 1 мкм), а усредненный показатель преломления в диапазоне зарегистрированного СИ ионов Pr³⁺ примерно равен 2. Коэффициент распределения ионов Pr³⁺ в этих соединениях близок к единице, что способствует получению данных кристаллов с достаточно хорошим оптическим качеством вплоть до атомной концентрации активатора 10%.

Таким образом, созданы два новых празеодимсодержащих лазерных кристалла $KY(WO_4)_2$ и $KGd(WO_4)_2$, изучены их свойства и при комнатной температуре с ламповой накачкой возбуждено низкопороговое импульсное и квазинепрерывное одномикронное СИ на переходах генерационного канала ${}^1D_2 \rightarrow {}^3F_4$. Есть основания надеяться, что лазеры на основе этих новых активных сред с полупроводниковой накачкой в канале ${}^{3}H_{4} \rightarrow {}^{1}D_{2}$ смогут составить серьезную конкуренцию неодимовым кристаллическим лазерам, в том числе и лазерам на основе $Y_{3}Al_{5}O_{12}:Nd^{3+}$.

Работа выполнялась при частичной финансовой поддержке Российского фонда фундаментальных исследований, государственных программ «Фундаментальная метрология» и «Оптика. Лазерная физика», а также по гранту № MAG-300 Международого научного фонда и Российского правительства.

- Kaminskii A.A. Laser crystals, their physics and properties (Berlin, Heidelberg, N.Y., Ldn, Paris, Tokyo, Springer-Verlag, 1981, 1990).
- Koechner W. Solid-state laser engng (Berlin, Heidelberg, N.Y., Ldn, Paris, Tokyo, Springer-Verlag, 1976, 1988, 1991).
- 3. M.J.Weber (Ed.). *Handbook of laser science and technology* (Boca Raton, Ann Arbor, Boston, CRC Press, 1991, suppl. 1).

A.A.Kaminskii, S.N.Bagaev, L.Li, F.A.Kuznetsov, A.A.Pavlyuk. New crystalline lasers for the 1-µm wavelength range.

New laser crystals were prepared from potassium-rare-earth tungstates KY(WO₄)₂ and KGd(WO₄)₂ activated with Pr³⁺ ions. Flashlamp pumping at room temperature resulted in low-threshold pulsed and quasi-cw generation of stimulated radiation in the neodymium range of wavelengths ($1.06 - 1.07 \mu m$, ${}^{1}D_{2} \rightarrow {}^{3}F_{4}$ lasing channel).