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Summary

The questions of the stability of the shear layers with respect to
di sturbances of its boundary and to the acoustic disturbance are
exam ned. The problemis solved by the nmethod of discrete vortex
particles. Linear stage of devel opnent of the disturbances has been
investigated in great detail, analytically as well as nunerically,
then nonlinear stage is investigated nunerically only.

The problemof stability of hydrodynamic flows is still of
interest despite a nunerous literature. It is connected with
the fact that up to now we are not able to study a nonlinear
stage of the disturbance devel opnent and have a poor
understanding of the transition froma linear stage to a
nonl i near one. By solving problens on the stability sone

di sturbance is always introduced, the nature of which is not
di scussed. At the sane time it seens to us that for

el uci dating the mechani sns of the instability devel opnent it
is necessary to study the influence of specific types of

di sturbances typical of the aerodynamc flows. In

particular, in our opinion the study of acoustic disturbances
is of special interest. There exists a nunmerous literature
devoted to studying the influence of acoustics on the flows
as well as the opposite influence of the flow on acoustics
(see, f.e., reviews [1,2] ). However, usually the boundary
val ue problens are studied in which there take place the
interactions of acoustics with a boundary as well as with
the fl ow and boundary i nhonogeneities and other conpl ex

i nterference phenormena. For this reason we have chosen for
exam nation an infinite problemon the vortex layer stability
under the action of acoustic disturbances. A two-dinmensiona
(in the x,y pl ane)
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noti on of unbounded conpressible fluid is considered. The flowwith
the velocity conponents (U,0)in the regiony<0 and (-U,0)in the
region y<0 is the sinplest flow, the stability of which will "be
di scussed. Thus, the question is about the stability of the vortex
sheet. The stability of the vortex layer of a finite thickness A
with a constant distribution of vorticity and of the layer with a
profile of undisturbed velocity V, =Uth(y/A)is al so under

consi deration. V& have al so i nvestigated the problemof the stability
of the shear layers with respect to disturbances of its boundary.
Let a plane acoustic wave propagate in aregiony < 0. In a genera
case this wave undergoes the reflection and refracti on when passing
through a vortex layer. W shall consider a case of snall Mach
numbers M =U/c, <<1. Then the nentioned effects may be negl ect ed
in the zero approxi mation.

The problemis solved by the method of discrete vortex particles.
This met hod has been devel oped by the authors of [3,4] for the case
of an inconpressible fluid. Therefore when solving the formul ated
probl emwe have to nodify the above rmethod. Wile deriving the
equations of notion of discrete vortex particles we proceed,
simlarly as it was done in [3,4], froma formula representing the
velocity field v through the vorticity w which in Lagrangi an
variabl es for the two-dinensional isentropic flows has the form

L _LI[F(E,O—F(E,t)]vao(f')dg, v
FE0-FE.0r

dt 27T
hereﬂﬁ(?ﬁ isthe initial vorticity,fj¢ is the potential part of

(1)

the velocity field

Unlike the inconpressible fluid Eg.(1) is not closed, another
equation i s needed for determining the potential @¢. To derive it we
shal | proceed fromthe inpul se equation witten in the Lanb form
[5]. Calculating the divergence of both sides of this equation and
using the discontinuity equation, we can derive an equation for
determining the potential. In a general case this equation is

rat her conpl ex. However, in the probl emunder study it is
sinplified as the anplitude of the potential part of the velocity
field is small as conpared with U and takes the form
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where # is the solenoidal part of the velocity. For sufficiently slow

62_¢ =g +ME(A‘1W2 _ﬁ) - A 3
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here Aand A are the anplitude and the wavel ength of acoustic disturbance,
respectively.

PromEqg. (3) it follows that the nonstationary vortex notions of fluid generate
an aerodynam ¢ sound even at uniforminitial conditions. In what follows for
sinplicity we confine ourselves to the case when M << & At this condition we
may negl ect the aerodynam ¢ sound generated by nonstationary motion of vortices
that allows in a pure formto study the influence of external acoustic field on
the fluid flow Then in the zero approxi mation the potential ¢ satisfies the
wave equation. In what follows we shall consider the interaction of the exanm ned
flowwith a plane harmonic wave. In this case the second termin the right-hand
side of Eqg.(1) is deternined by expression E¢ = —Algsin(lg B’(g?,t)—Qt, ( Kis
the wave vector and Qis the freguency).

Carrying out simlarly as in our works [3,4] the discretization of Eq.(1), we
arrive at a systemof equations for discrete vortex particles. In conputations
we made use of the Gauss formof distribution of the vortex particle

R S N e/ I (A S L
ERE 0 R T L

dt 21T 7

- Ak sin(k [, — Q1) a=12,..N

where [,is the circulation of the vortex particle a, 55 isits dispersion, n
is the unit vector normal to the plane(x, y). Thus,the solution of the problem
on the shear layer stability with respect to acoustic disturbances reduces to
the solution of the equations of notion of the vortex particles in the external
field.

As our purpose is to exanine both the linear and nonlinear stages of devel opnent
of acoustic disturbances in shear layers, it is advisable to study the problem
anal ytically before stating the results of numerical conputations. & list here the
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results of solving the problemof the linear theory of stability for vortex
sheet although the sinilar conputations nay be carried out also for a vortex
layer of afinite length with linear distribution of velocity.

Thus let A(x,t) be a function determning a shape of the vortex sheet. n

oh . 0D, Oh _ 0D, 3 3
T SOy =2 e, 2,

el , (5)
ot Ox Ox Oy o 2

where @is the velocity field potential. Here and everywhere in what follows
the values pertaining to a region y<h are nmarked by the index m nus and

those pertaining to a region y >hby the index plus. The last condition is
a consequence of the pressure continuity on the vortex sheet. Now represent
the potentials Cl)iin the formof the sumof a potential induced by the vortex

sheet \Pi and of a potential ¢J_r condi tioned by the acoustic field presence.
W have shown that for the present problem @, =@ = Acos(kx —Qt). The

potential s LIJJ_, satisfy the Lapl ace equation in the correspondi ng regi ons and
I I

they may be represented in the form W, = U, +W, (W, are the deviations of

the potential s Wifromthe undi st ur bed val ues iUx Substituting these
expressions into Eg.(5) and linearizing them we find

Oh , ,Oh _0%; 3¢

N - s ALIJ:— = 09

ot ox dy Oy - (6)
ow, oWl +U(6LP+ +6LIJ_):2U%

ot ot Ox Ox Ox

wth boundary conditions Wz =0 at y — Foo.

A general solution of a systemof equations (6) w thout source terns has been
obt ai ned by Hel nholtz, A particular solution will be sought for in the

fol l owing form (Cx :Q/kx)

h= Ah e ik (x—c‘.t) LPI$ =4 (y) e ikx(x—cxt)
: T ,
Then it is easy to make sure of the fact that the functions A4%(y)and
4,
4K ¢, AU

A =a, exp(¥k.y), A, =- =i ,
((¥) = a, exp(Fk,y) O T N e
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Now a general solution of a systemof equations (6) may be obtai ned

in a general way. In particular, for the function A the follow ng
expressi on

Ack, AU .
h(x,t) = —————-cos(k,x = Qf) + ———sin(k,x — Q1) +
(c; Uk, V c, U (7

1 _ t st .
+(c;€° +epe ¥ cos(k x) +(cy e’ +cpe ™ )sin(k,x),0 =k U

is derived.

Thus, the presence of acoustic field | eads to the vortex sheet

di sturbance. This disturbance forms both from acoustic disturbance
the anplitude of which is linited and nmoreover small and from vortex
di sturbance excited by acoustics whose anplitude increases
exponentially in a general case. It is possible to showthat this

di sturbance will be of sinusoidal character.

How consi der the conputational results of the vortex sheet stability
with respect to acoustic disturbances. In the nethod suggested in the
present paper the problemis reduced to solving a systemof equations
(4). In conputations the nunber of vortex particles N was varied from
120 up to 336. The dispersions of the vortex particles 50 wer e
determned in a simlar way as in [4].

The equations of motion (4) are valid for the description of two-

di nensional flows of a conpressible fluid when the followi ng conditions
M <<1, &<1, &>M are satisfied. Therefore the specific conputations
were carried out by the follow ng val ues of the parameters M = 102
£= 101 6=- w4 (B is the angle between the vector /gand the axis x).
By such a choice of parameters the anplitudes of disturbances

of the transverse velocity conponent generated by external acoustic
field turn out to be of the order 103+10* at the initial stage.

The conputations were carried out at the time interval equal to several
units T=A/U.

A typical picture of the vortex sheet evolution in the presence

of external acoustic field is shown in Fig.1 (N = 336). The
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Fig.1. Evolution of the vortex sheet in the external acoustic
field

initial location of the vortex sheet is rectilinear. At the
first stage ¢#< 0.8 the vortex sheet shape is sinusoidal and
its anplitude and that of the transverse velocity conponent
grow exponentially in tinme. \Wen the anplitude of the vortex
sheet achi eves a value of the order 0.01 the nonlinear effects
begin to be displayed and as a result a shape of the vortex
sheet deviates nmore and nmore from sinusoidal. By the tine no-
ment t= 1.2 a shape of the vortex sheet becomes "sawtooth" and
|l ater we can observe its destruction that |leads to the
formation of large vortex structures

Pig.2. Rate of the increase of the functions hy, and 9

Y max
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Fig. 2 shows the graphs of the rate of the increase in the logarithm
of the anplitude of disturbances of the transverse velocity conponent
(Fig.2a) and of the logarithmof the function % anplitude (Fig. 2b).
Here the dotted curves correspond to the linear theory. The analysis
of these dependencies indicates that at the initial stage < 0.8 the
linear stage of the disturbances devel opnent takes place when only
their anplitudes increase w thout changing a shape.

At the second stage fromO0.8 up to ¢ = 1.2 one can observe sone

quasi | i near stage of the disturbances devel opnment. Here the anplitudes
al so i ncrease exponentially, a shape of the vortex sheet begins to
change. Finally, at ¢= 1.2 the growth of the shear |ayer thickness
ceases to be exponential and becones |inear, a nonlinear stage of the
di sturbances devel opnent starts. At this nonent the vortex sheet
"breaks and the anplitude of the transverse velocity reaches its

maxi mum val ue.

We have carried out also the conputations of the vortex sheet
stability with respect to disturbances of its boundary. A value of the
anmpl i tude of the function /% disturbance was varied within a range
from10°® up to 10! In these cases a character of the disturbances
devel opnent turns out to be qualitatively the same under the action of
acousti c di sturbances. The presence of the linear stage of their
devel oprment is also observed at the initial small anplitudes of

di sturbances. It should be noted that with increasing the initial
anplitude of disturbances the duration of this stage decreases. At
last, at initial disturbances of the order 0.01 the linear stage of

t he di sturbances devel opnent is al nbst absent. Increasing nore and
nore the initial anplitudes we can achieve the state when the

di sturbances will increase nonlinearly at once. At that the anplitude
of disturbances of the vortex sheet boundary grows slowy (Pig.3a),
and the disturbances of the velocity at the initial stage drastically
increase and then fluctuate near some mean value (Fig. 3).

Up to now we have exami ned the evolution of the vortex sheet assum ng
the fluid inviscid. As a real fluid always possesses a finite
viscosit3--, this fact should be taken into account when solving the
problem 1In the given problemthe viscosity can be taken into
consideration in a simlar way as it has been suggested
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Fig.3. Rate of the increase of the functions /. and 9
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in our work [4], having inplenented the splitting up of the equation of
vorticity in terms of the physical processes.

It is well known that the vortex sheet in viscid fluid is unstable with
respect to any disturbances. The regard for viscosity exerts a
stabilizing influence. The critical Reynol ds nunmber which deternines
the begi nning of the vortex sheet instability in the external acoustic
field RGis equal to 65, This nunber decreases when the anplitude of

t he di sturbances i ncreases.

W have carried out simlar conputations as for the vortex sheet for a
| ayer of finite thickness. Since the value of acoustic disturbances is
small and their role is in fact reduced to excitation of vortex

di sturbances, the further devel opnent of which weakly depends on the
presence of acoustic field, the conputation results have proved to be
in a good agreement with linear theory. For the vortex layer with a

pi ecewi se-linear velocity distribution the instability was observed at
k/A<13, and for a layer with velocity distribution according to the
tangent law at kA<I.,
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