Recent acquisitions archives | Russian acquisitions | Foreign acquisitions | Sigla(Rus)
CoverZaihraiev O. Large-deviation theorems for sums of independent and identically distributed random vectors. - Torun: University of Nicolaus Copernicus Press, 2005. - 187 p. - ISBN 83-223-1872-1
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Contents
 
Introduction .................................................... 5

Chapter 1. Large-deviation theorems for heavy-tailed
           distributions attracted by normal law ............... 25

1.1. Regularly varying absolutely continuous distributions ..... 25
     1.1.1. Theorems and corollaries ........................... 27
     1.1.2. Proofs ............................................. 31
1.2. Regularly varying lattice distributions ................... 48
     1.2.1. Theorems and corollaries ........................... 48
     1.2.2. Proofs ............................................. 50

Chapter 2. Multivariate a-stable distributions ................. 61

2.1. Analytical properties of α-stable distributions ........... 61
     2.1.1. Asymptotic formulas for α-stable densities ......... 62
     2.1.2. Proofs ............................................. 71
2.2. Large-deviation theorems for regularly varying
     absolutely continuous distributions attracted
     by α-stable law ........................................... 80
     2.2.1. Theorems and corollaries ........................... 83
     2.2.2. Proofs ............................................. 86
2.3. Large-deviation theorems for singular directions .......... 97
     2.3.1. Theorems and corollaries ........................... 98
     2.3.2. Auxiliary statements .............................. 100
     2.3.3. Proofs ............................................ 105

Chapter 3. Limit theorems under the Cramer condition .......... 119

3.1. Gamma-like distributions ................................. 119
     3.1.1. Abel-type theorem ................................. 121
     3.1.2. Limit laws for conjugate distributions ............ 123
     3.1.3. Local limit theorems .............................. 125
     3.1.4. Proofs ............................................ 128
3.2. Compactly supported distributions ........................ 142
     3.2.1. Abel-type theorem ................................. 142
     3.2.2. Limit laws for conjugate distributions ............ 144
     3.2.3. Local limit theorems .............................. 146
     3.2.4. Remarks and example ............................... 148
     3.2.5. Proofs ............................................ 154

Appendix A. Regularly varying functions and regularly
            varying distributions ............................. 165
Appendix B. Auxiliary result .................................. 172

Bibliography .................................................. 177

Recent acquisitions archives | Russian acquisitions | Foreign acquisitions | Sigla(Rus)
 

[ Home | Library | Akademgorodok | News | Exhibitions | Resources | InfoPilot | Biblio | Partners | Search | Russian Pages ]

Send Suggestions | E-mail to: www@prometeus.nsc.ru
Russification of your software | Access Statistics: archives | current
© 1998-2010 Branch of SPSL SB RAS, Novosibirsk, Russia
Rambler's Top100

Updated: Fri Apr 22 11:52:05 2011. Size: 4,703 bytes.
Visit No. 319 c 02.06.2009