Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
CoverDawidowski Ł. Scales of banach spaces, theory of interpolation and their applications. - Katowice: Wydawnictwo Uniwersytetu Śląskiego, 2012. - 105 p. - Bibliogr.: p.103-105. - ISBN 978-83-226-2112-7; ISSN 0208-6336
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ......................................................... 7

Chapter 1
Fractional powers of operators ................................. 11

Chapter 2
Interpolation spaces ........................................... 17
2.1  Spaces Dσp ................................................ 18
2.2  Definition of interpolation spaces S(p,θ,X;p,θ - 
     1,Y) ...................................................... 23
2.3  Complex interpolation space ............................... 25
2.4  Another definition of interpolation spaces; Real
     interpolation space ....................................... 27
     2.4.1  The K-method ....................................... 28
     2.4.2  The trace method ................................... 30
     2.4.3  The Reiteration Theorem ............................ 32
     2.4.4  Some examples ...................................... 33

Chapter 3
Infinitesimal generators of semi-groups ........................ 35
3.1  Infinitesimal generators of bounded semi-groups ........... 35
3.2  Infinitesimal generators of bounded analytic semi-
     groups .................................................... 36

Chapter 4
Scales of Banach Spaces ........................................ 39
4.1  Inductive Limits and Projective Limits of Sequences of
     Banach Spaces ............................................. 40
4.2  Regular Spaces and Hyper-spaces ........................... 51

Chapter 5
Examples of scales of Banach spaces ............................ 63

Chapter 6
Sectorial Operators ............................................ 71
6.1  Examples of Sectorial Operators ........................... 73

Chapter 7
Applications ................................................... 79

Chapter 8
The abstract Cauchy problem .................................... 89
8.1  Examples and applications ................................. 90

Appendix A
Theory of distributions and the Fourier transform .............. 99
A.l  Theory of distributions ................................... 99
A.2  The Fourier transform of rapidly decreasing functions .... 100
A.3  The Fourier transform of tempered distributions .......... 101

Bibliography .................................................. 103
Streszczenie .................................................. 107
Резюме ........................................................ 107

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[ Home | Library | Akademgorodok | News | Exhibitions | Resources | InfoPilot | Biblio | Partners | Search | Russian Pages ]

Send Suggestions | E-mail to: www@prometeus.nsc.ru
Russification of your software | Access Statistics: archives | current
© 1998-2015 Branch of SPSL SB RAS, Novosibirsk, Russia
Rambler's Top100

The document updated: Mon Jul 13 12:52:28 2015. Size: 4,669 bytes.
Visit No. 38 since 12.02.2013