Recent acquisitions archives | Russian acquisitions | Foreign acquisitions | Sigla(Rus)
CoverBroomhead N. Dimer models and Calabi-Yau algebras. - Providence: American Mathematical Society, 2012. - vii, 86 p.: ill. - (Memoirs of the American Mathematical Society; vol.215, N 1011). - Bibliogr.: p.85-86. - ISSN 0065-9266; ISBN 978-0-8218-5308-5
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Acknowledgements .............................................. vii

Chapter 1  Introduction ......................................... 1
1.1  Overview ................................................... 1
1.2  Structure of the article and main results .................. 2
1.3  Related results ............................................ 5

Chapter 2  Introduction to the dimer model ...................... 7
2.1  Quivers and algebras from dimer models ..................... 7
2.2  Symmetries ................................................ 13
2.3  Perfect matchings ......................................... 14

Chapter 3  Consistency ......................................... 19
3.1  A further condition on the R-symmetry ..................... 19
3.2  Rhombus tilings ........................................... 20
3.3  Zig-zag flows ............................................. 24
3.4  Constructing dimer models ................................. 28
3.5  Some consequences of geometric consistency ................ 31

Chapter 4  Zig-zag flows and perfect matchings ................. 35
4.1  Boundary flows ............................................ 35
4.2  Some properties of zig-zag flows .......................... 36
4.3  Right and left hand sides ................................. 38
4.4  Zig-zag fans .............................................. 39
4.5  Constructing some perfect matchings ....................... 43
4.6  The extremal perfect matchings ............................ 45
4.7  The external perfect matchings ............................ 48

Chapter 5  Toric algebras and algebraic consistency ............ 53
5.1  Toric algebras ............................................ 53
5.2  Some examples ............................................. 54
5.3  Some properties of toric algebras ......................... 56
5.4  Algebraic consistency for dimer models .................... 58
5.5  Example ................................................... 58

Chapter 6  Geometric consistency implies algebraic 
           consistency ......................................... 61
6.1  Flows which pass between two vertices ..................... 61
6.2  Proof of Proposition 6.2 .................................. 64
6.3  Proof of Theorem 6.1 ...................................... 71

Chapter 7  Calabi-Yau algebras from algebraically consistent
           dimers .............................................. 73
7.1  Calabi-Yau algebras ....................................... 73
7.2  The one sided complex ..................................... 75
7.3  Key lemma ................................................. 77
7.4  The main result ........................................... 78

Chapter 8  Non-commutative crepant resolutions ................. 81
8.1  Reflexivity ............................................... 81
8.2  Non-commutative crepant resolutions ....................... 83
Bibliography ................................................... 85

Recent acquisitions archives | Russian acquisitions | Foreign acquisitions | Sigla(Rus)
 

[ Home | Library | Akademgorodok | News | Exhibitions | Resources | InfoPilot | Biblio | Partners | Search | Russian Pages ]

Send Suggestions | E-mail to: www@prometeus.nsc.ru
Russification of your software | Access Statistics: archives | current
© 1998-2010 Branch of SPSL SB RAS, Novosibirsk, Russia
Rambler's Top100

The document updated: Wed Jun 11 12:16:30 2014 Size: 5,230 bytes.
Visit No. 96 since 26.06.2012