Recent acquisitions archives | Russian acquisitions | Foreign acquisitions | Sigla(Rus)
CoverJöllenbeck M. Minimal resolutions via algebraic discrete Morse theory / M.Jöllenbeck, V.Welker. - Providence: American Mathematical Society, 2009. - vi, 74 p. - (Memoirs of the American Mathematical Society; Vol.197, N 923). - Bibliogr.: p.71-72. - Ind.: p.73-74. - ISBN 978-0-8218-4257-7; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1. Introduction ......................................... 1

Chapter 2. Algebraic Discrete Morse Theory ...................... 7

Chapter 3. Resolution of the Residue Field in the Commutative
           Case ................................................ 11
   1. Gröbner Bases and Discrete Morse Theory .................. 11
   2. An Anick Resolution for the Commutative Polynomial
      Ring ..................................................... 14
   3. Two Special Cases ........................................ 17

Chapter 4. Resolution of the Residue Field in the Non-
           Commutative Case .................................... 21
   1. Non-commutative Gröbner Bases and Discrete Morse
      Theory ................................................... 21
   2. The Anick Resolution ..................................... 23
   3. The Poincaré-Betti Series of k ........................... 24
   4. Examples ................................................. 25

Chapter 5. Application to the Acyclic Hochschild Complex ....... 29
   1. Hochschild Homology and Discrete Morse Theory ............ 29
   2. Explicit Calculations of Hochschild Homology ............. 31

Chapter 6. Minimal (Cellular) Resolutions for (p-)Borel Fixed
           Ideals .............................................. 35
   1. Cellular Resolutions ..................................... 35
   2. Cellular Minimal Resolution for Principal Borel Fixed 
      Ideals ................................................... 37
   3. Cellular Minimal Resolution for a Class of p-Borel 
      Fixed Ideals ............................................. 40

Appendix A. The Bar and the Hochschild Complex ................. 57

Appendix B. Proofs for Algebraic Discrete Morse Theory ......... 61

Bibliography ................................................... 71

Index .......................................................... 73

Recent acquisitions archives | Russian acquisitions | Foreign acquisitions | Sigla(Rus)
 

[ Home | Library | Akademgorodok | News | Exhibitions | Resources | InfoPilot | Biblio | Partners | Search | Russian Pages ]

Send Suggestions | E-mail to: www@prometeus.nsc.ru
Russification of your software | Access Statistics: archives | current
© 1998-2010 Branch of SPSL SB RAS, Novosibirsk, Russia
Rambler's Top100

Updated: Mon Aug 6 14:05:35 2012. Size: 4,230 bytes.
Visit No. 180 since 09.11.2010