Suresh S. Fatigue of materials (Cambridge; New York, 1998 (2004)). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив | Естествознание | Математика | Физика | Химическая промышленность | Науки о жизни
ОбложкаSuresh S. Fatigue of materials. - 2nd ed. - Cambridge; New York: Cambridge University Press, 1998 (2004). - xxi, 679 p.: ill. - Ref.: p.614-658. - Auth. ind.: p.658-668. - Sub. ind.: p.669-679. - ISBN 978-0-521-57847-9
 

Оглавление / Contents
 
Preface to the second edition ................................ xvii
Preface to the first edition .................................. xix

1    Introduction and overview .................................. 1
1.1  Historical background and overview ......................... 1
     1.1.1  Case study: Fatigue and the Comet airplane .......... 8
1.2  Different approaches to fatigue ........................... 11
     1.2.1  Total-life approaches .............................. 12
     1.2.2  Defect-tolerant approach ........................... 13
     1.2.3  A comparison of different approaches ............... 14
     1.2.4  'Safe-life' and 'fail-safe' concepts ............... 14
     1.2.5  Case study: Retirement for cause ................... 15
1.3  The need for a mechanistic basis .......................... 17
1.4  Continuum mechanics ....................................... 18
     1.4.1  Elements of linear elasticity ...................... 20
     1.4.2  Stress invariants .................................. 21
     1.4.3  Elements of plasticity ............................. 22
     1.4.4  Elements of linear viscoelasticity ................. 26
     1.4.5  Viscoplasticity and viscous creep .................. 28
1.5  Deformation of ductile single crystals .................... 29
     1.5.1 Resolved shear stress and shear strain .............. 30
     Exercises ................................................. 33

PART ONE: CYCLIC DEFORMATION AND FATIGUE CRACK INITIATION ...... 37

2    Cyclic deformation in ductile single crystals ............. 39
2.1  CMic strain hardening in single crystals .................. 40
2.2  Cyclic saturation in single crystals ...................... 40
     2.2.1  Monotonie versus cyclic plastic strains ............ 45
2.3  Instabilities in cyclic hardening ......................... 45
     2.3.1  Example problem: Identification of active slip
            systems ............................................ 47
     2.3.2  Formation of dislocation veins ..................... 49
     2.3.3  Fundamental length scales for the vein structure ... 52
2.4  Deformation along persistent slip bands ................... 52
2.5  Dislocation structure of PSBs ............................. 53
     2.5.1  Composite model .................................... 57
     2.5.2  Example problem: Dislocation dipoles and cyclic
            deformation ........................................ 58
2.6  A constitutive model for the inelastic behavior of PSBs ... 60
     2.6.1  General features ................................... 60
     2.6.2  Hardening in the PSBs .............................. 61
     2.6.3  Hardening at sites of PSB intersection with the
            free surface ....................................... 61
     2.6.4  Unloading and reloading ............................ 62
     2.6.5  Vacancy generation ................................. 62
2.7  Formation of PSBs ......................................... 63
     2.7.1  Electron microscopy observations ................... 63
     2.7.2  Static or energetic models ......................... 65
     2.7.3  Dynamic models of self-organized dislocation
            structures ......................................... 68
2.8  Formation of labyrinth and cell structures ................ 69
     2.8.1  Example problem: Multiple slip ..................... 71
2.9  Effects of crystal orientation and multiple slip .......... 72
2.10 Case study: A commercial FCC alloy crystal ................ 74
2.11 Monotonie versus cyclic deformation in FCC crystals ....... 78
2.12 Cyclic deformation in BCC single crystals ................. 79
     2.12.1 Shape changes in fatigued BCC crystals ............. 80
2.13 Cyclic deformation in HCP single crystals ................. 82
     2.13.1 Basic characteristics of Ti single crystals ........ 83
     2.13.2 Cyclic deformation of Ti single crystals ........... 83
     Exercises ................................................. 84

3    Cyclic deformation in noncrystalline ductile solids ....... 86
3.1  Effects of grain boundaries and multiple slip ............. 86
     3.1.1  Monocrystalline versus polycrystalline FCC metals .. 87
     3.1.2  Effects of texture ................................. 89
3.2  Cyclic deformation of FCC bicrystals ...................... 89
     3.2.1  Example problem: Number of independent slip
            systems ............................................ 91
3.3  Cyclic hardening and softening in polycrystals ............ 91
3.4  Effects of alloying, cross slip and stacking fault
     energy .................................................... 95
3.5  Effects of precipitation .................................. 97
3.6  The Bauschinger effect .................................... 97
     3.6.l  Terminology ........................................ 98
     3.6.2  Mechanisms ......................................... 99
3.7  Shakedown ................................................ 101
3.8  Continuum models for uniaxial and multiaxial fatigue ..... 102
     3.8.1  Parallel sub-element model ........................ 104
     3.8.2  Field of work hardening moduli .................... 106
     3.8.3  Two-surface models for cyclic plasticity .......... 110
     3.8.4  Other approaches .................................. 112
3.9  Cyclic creep or ratchetting .............................. 113
3.10 Metal-matrix composites subjected to thermal cycling ..... 115
     3.10.1 Thermoelastic deformation ......................... 115
     3.10.2 Characteristic temperatures for thermal fatigue ... 117
     3.10.3 Plastic strain accumulation during thermal
            cycling ........................................... 119
     3.10.4 Effects of matrix strain hardening ................ 120
     3.10.5 Example problem: Critical temperatures for
            thermal fatigue in a metal-matrix composite ....... 122
3.11 Layered composites subjected to thermal cycling .......... 123
     3.11.1 Thermoelastic deformation of a bilayer ............ 124
     3.11.2 Thin-film limit: the Stoney formula ............... 127
     3.11.3 Characteristic temperatures for thermal fatigue ... 128
     Exercises ................................................ 129

4    Fatigue crack initiation in ductile solids ............... 132
4.1  Surface roughness and fatigue crack initiation ........... 132
     4.1.1  Earlier observations and viewpoints ............... 133
     4.1.2  Electron microscopy observations .................. 134
4.2  Vacancy-dipole models .................................... 137
4.3  Crack initiation along PSBs .............................. 141
4.4  Role of surfaces in crack initiation ..................... 143
4.5  Computational models for crack initiation ................ 143
     4.5.1  Vacancy diffusion ................................. 143
     4.5.2  Numerical simulations ............................. 145
     4.5.3  Example problem: Effects of vacancies ............. 146
4.6  Environmental effects on crack initiation ................ 147
4.7  Kinematic irreversibility of cyclic slip ................. 148
4.8  Crack initiation along grain and twin boundaries ......... 149
4.9  Crack initiation in commercial alloys .................... 152
     4.9.1  Crack initiation near inclusions and pores ........ 152
     4.9.2  Micromechanical models ............................ 155
4.10 Environmental effects in commercial alloys ............... 156
4.11 Crack initiation at stress concentrations ................ 157
     4.11.1 Crack initiation under far-field cyclic
            compression ....................................... 158
     Exercises ................................................ 162

5    Cyclic deformation and crack initiation in brittle
     solids ................................................... 165
5.1  Degrees of brittleness ................................... 166
5.2  Modes of cyclic deformation in brittle solids ............ 167
5.3  Highly brittle solids .................................... 169
     5.3.1  Mechanisms ........................................ 169
     5.3.2  Constitutive models ............................... 170
     5.3.3  On possible effects of cyclic loading ............. 175
     5.3.4  Elevated temperature behavior ..................... 176
5.4  Semi-brittle solids ...................................... 179
     5.4.1  Crack nucleation by dislocation pile-up ........... 179
     5.4.2  Example problem: Cottrell mechanism for sessile
            dislocation formation ............................. 180
     5.4.3  Cyclic deformation ................................ 182
5.5  Transformation-toughened ceramics ........................ 184
     5.5.1  Phenomenology ..................................... 185
     5.5.2  Constitutive models ............................... 187
5.6  Fatigue crack initiation under far-field cyclic
     compression .............................................. 191
     5.6.1  Example problem: Crack initiation under
            far-field cyclic compression ...................... 196
     Exercises ................................................ 197

6    Cyclic deformation and crack initiation in
     noncrystalline solids .................................... 200
6.1  Deformation features of semi-/noncrystalline solids ...... 200
     6.1.1  Basic deformation characteristics ................. 200
     6.1.2  Crazing and shear banding ......................... 201
     6.1.3  Cyclic deformation: crystalline versus
            noncrystalline materials .......................... 203
6.2  Cyclic stress-strain response ............................ 205
     6.2.1  Cyclic softening .................................. 205
     6.2.2  Thermal effects ................................... 207
     6.2.3  Example problem: Hysteretic heating ............... 207
     6.2.4  Experimental observations of temperature rise ..... 209
     6.2.5  Effects of failure modes .......................... 210
6.3  Fatigue crack initiation at stress concentrations ........ 211
6.4  Case study: Compression fatigue in total knee
     replacements ............................................. 213
     Exercises ................................................ 217

PART TWO: TOTAL-LIFE APPROACHES ............................... 219

7    Stress-life approach ..................................... 221
7.1  The fatigue limit ........................................ 222
7.2  Mean stress effects on fatigue life ...................... 224
7.3  Cumulative damage ........................................ 227
7.4  Effects of surface treatments ............................ 228
7.5  Statistical considerations ............................... 231
7.6  Practical applications ................................... 235
7.6  Example-problem: Effects of surface treatments ........... 235
     7.6.2   Case study: HCF in aircraft turbine engines ...... 236
7.7  Stress-life response of polymers ......................... 237
     7.7.1  General characterization .......................... 237
     7.7.2  Mechanisms ........................................ 238
7.8  Fatigue of organic composites ............................ 239
     7.8.1  Discontinuously reinforced composites ............. 240
     7.8.2  Continuous-fiber composites ....................... 240
7.9  Effects of stress concentrations ......................... 242
     7.9.1    Fully reversed cyclic loading ................... 242
     7.9.2  Combined effects of notches and mean stresses ..... 243
     7.9.3  Nonpropagating tensile fatigue cracks ............. 244
     7.9.4  Example problem: Effects of notches ............... 244
7.10 Multiaxial cyclic stresses ............................... 246
     7.10.1 Proportional and nonproportional loading .......... 246
     7.10.2 Effective stresses in multiaxial fatigue loading .. 247
     7.10.3 Stress-life approach for tension and torsion ...... 248
     7.10.4 The critical plane approach ....................... 250
     Exercises ................................................ 254

8    Strain-life approach ..................................... 256
8.1  Strain-based approach to total life ...................... 256
     8.1.1  Separation of low-cycle and high-cycle fatigue
            lives ............................................. 256
     8.1.2  Transition life ................................... 257
     8.1.3  Example problem: Thermal fatigue life of
            a metal-matrix composite .......................... 260
8.2  Local strain approach for notched members ................ 262
     8.2.1  Neuber analysis ................................... 263
8.3  Variable amplitude cyclic strains and cycle counting ..... 265
     8.3.1  Example problem: Cycle counting ................... 265
8.4  Multiaxial fatigue ....................................... 268
     8.4.1  Measures of effective strain ...................... 268
     8.4.2  Case study: Critical planes of failure ............ 269
     8.4.3  Different cracking patterns in multiaxial
            fatigue ........................................... 271
     8.4.4  Example problem: Critical planes of failure in
            multiaxial loading ................................ 273
8.5  Out-of-phase loading ..................................... 276
     Exercises ................................................ 278

PART THREE: DAMAGE-TOLERANT APPROACH .......................... 281

9    Fracture mechanics and its implications for fatigue ...... 283
9.1  Griffith fracture theory ................................. 283
9.2  Energy release rate and crack driving force .............. 285
9.3  Linear elastic fracture mechanics ........................ 288
     9.3.1  Macroscopic modes of fracture ..................... 288
     9.3.2  The plane problem ................................. 289
     9.3.3  Conditions of K-dominance ......................... 295
     9.3.4  Fracture toughness ................................ 296
     9.3.5  Characterization of fatigue crack growth .......... 296
9.4  Equivalence of Q and К ................................... 297
     9.4.1  Example problem: Q and К for the DCB specimen ..... 298
     9.4.2  Example problem: Stress intensity factor for
            a blister test .................................... 300
9.5  Plastic zone size in monotonic loading ................... 302
     9.5.1  The Irwin approximation ........................... 302
     9.5.2  The Dugdale model ................................. 303
     9.5.3   The Barenblatt model ............................. 304
9.6  Plastic zone size in cyclic loading ...................... 304
9.7  Elastic-plastic fracture mechanics ....................... 307
     9.7.1  The J-integral .................................... 307
     9.7.2  Hutchinson-Rice-Rosengren (HRR) singular fields ... 308
     9.7.3  Crack tip opening displacement .................... 309
     9.7.4  Conditions of J-dominance ......................... 310
     9.7.5  Example problem: Specimen size requirements ....... 312
     9.7.6  Characterization of fatigue crack growth .......... 313
9.8  Two-parameter representation of crack-tip fields ......... 316
     9.8.1  Small-scale yielding .............................. 318
     9.8.2  Large-scale yielding .............................. 318
9.9  Mixed-mode fracture mechanics ............................ 319
9.10 Combined mode I-mode II fracture in ductile solids ....... 320
9.11 Crack deflection ......................................... 322
     9.11.1 Branched elastic cracks ........................... 324
     9.11.2 Multiaxial fracture due to crack deflection ....... 326
9.12 Case study: Damage-tolerant design of aircraft fuselage .. 327
     Exercises ................................................ 328

10   Fatigue crack growth in ductile solids ................... 331
10.1 Characterization of crack growth ......................... 331
     10.1.1 Fracture mechanics approach ....................... 332
     10.1.2 Fatigue life calculations ......................... 334
10.2 Microscopic stages of fatigue crack growth ............... 335
     10.2.1 Stage I fatigue crack growth ...................... 335
     10.2.2 Stage II crack growth and fatigue striations ...... 335
     10.2.3 Models for striation formation .................... 337
     10.2.4 Environmental effects on stage II fatigue ......... 340
10.3 Different regimes of fatigue crack growth ................ 341
10.4 Near-threshold fatigue crack growth ...................... 343
     10.4.1 Models for fatigue thresholds ..................... 345
     10.4.2 Effects of microstructural size scale ............. 346
     10.4.3 Effects of slip characteristics ................... 347
     10.4.4 Example problem: Issues of length scales .......... 351
     10.|,5 On the determination of fatigue thresholds ........ 352
10.5 Intermediate region of crack growth ...................... 354
10.6 High growth rate regime .................................. 357
10.7 Case study: Fatigue failure of aircraft structures ....... 358
10.8 Case study: Fatigue failure of total hip components ...... 364
10.9 Combined mode I-mode II fatigue crack growth ............. 368
     10.9.1 Mixed-mode fatigue fracture envelopes ............. 369
     10.9.2 Path of the mixed-mode crack ...................... 370
     10.9.3 Some general observations ......................... 372
10.10 Combined mode I-mode III fatigue crack growth ........... 373
     10.10.1 Crack growth characteristics ..................... 374
     10.10.2 Estimation of intrinsic growth resistance ........ 378
     Exercises ................................................ 379

11   Fatigue crack growth in brittle solids ................... 383
11.1 Some general effects of cyclic loading on crack growth ... 384
11.2 Characterization of crack growth in brittle solids ....... 385
     11.2.1 Crack growth under static loads ................... 385
     11.2.2 Crack growth under cyclic loads ................... 386
11.3 Crack growth resistance and toughening of brittle
     solids ................................................... 388
     11.3.1 Example problem: Fracture resistance and
            stability of crack growth ......................... 389
11.4 Cyclic damage zone ahead of tensile fatigue crack ........ 392
11.5 Fatigue crack growth at low temperatures ................. 393
11.6 Case study: Fatigue cracking in heart valve prostheses ... 396
11.7 Fatigue crack growth at elevated temperatures ............ 399
     11.7.1 Micromechanisms of deformation and damage due to
            intergranular/interfacial glassy films ............ 399
     11.7.2 Crack growth characteristics at high
            temperatures ...................................... 402
     11.7.3 Role of viscous films and ligaments ............... 403
     Exercises ................................................ 406

12   Fatigue crack growth in noncrystalline solids ............ 408
12.1 Fatigue crack growth characteristics ..................... 408
12.2 Mechanisms of fatigue crack growth ....................... 411
     12.2.1 Fatigue striations ................................ 411
     12.2.2 Discontinuous growth bands ........................ 413
     12.2.3 Combined effects of crazing and shear flow ........ 417
     12.2.4 Shear bands ....................................... 419
     12.2.5 Some general observations ......................... 420
     12.2.6 Example problem: Fatigue crack growth in epoxy
            adhesive .......................................... 422
12.3 Fatigue of metallic glasses .............................. 424
12.4 Case study: Fatigue fracture in rubber-toughened epoxy ... 426
     Exercises ................................................ 430

PART FOUR: ADVANCED TOPICS .................................... 433

13   Contact fatigue: sliding, rolling and fretting ........... 435
13.1 Basic terminology and definitions ........................ 435
13.2 Mechanics of stationary contact under normal loading ..... 439
     13.2.1 Elastic indentation of a planar surface ........... 440
     13.2.2 Plastic deformation ............................... 442
     13.2.3 Residual stresses during unloading ................ 443
     13.2.4 Example problem: Beneficial effects of surface
            compressive stresses .............................. 444
13.3 Mechanics of sliding contact fatigue ..................... 445
     13.3.1 Sliding of a sphere on a planar surface ........... 446
     13.3.2 Partial slip and complete sliding of a cylinder
            on a planar surface ............................... 447
     13.3.3 Partial slip of a sphere on a planar surface ...... 448
     13.3.4 Cyclic variations in tangential force ............. 449
13.4 Rolling contact fatigue .................................. 451
     13.4.1 Hysteretic energy dissipation in rolling contact
            fatigue ........................................... 452
     13.4.2 Shakedown limits for rolling and sliding contact
            fatigue ........................................... 453
13.5 Mechanisms of contact fatigue damage ..................... 457
     13.5.1 Types of microscopic damage ....................... 457
     13.5.2 Case study: Contact fatigue cracking in gears ..... 457
13.6 Fretting fatigue ......................................... 462
     13.6.1 Definition and conditions of occurrence ........... 462
     13.6.2 Fretting fatigue damage ........................... 463
     13.6.3 Palliatives to inhibit fretting fatigue ........... 466
     13.6.4 Example problem: Fracture mechanics methodology
            for fretting fatigue fracture ..................... 469
13.7 Case study: Fretting fatigue in a turbogenerator rotor ... 474
     13.7.1 Design details and geometry ....................... 474
     13.7.2 Service loads and damage occurrence ............... 474
     Exercises ................................................ 481

14   Retardation and transients in fatigue crack growth ....... 483
14.1 Fatigue crack closure .................................... 484
14.2 Plasticity-induced crack closure ......................... 486
     14.2.1 Mechanisms ........................................ 486
     14.2.2 Analytical models ................................. 490
     14.2.3 Numerical models .................................. 493
     14.2.4 Effects of load ratio on fatigue thresholds ....... 494
14.3 Oxide-induced crack closure .............................. 496
     14.3.1 Mechanism ......................................... 496
     14.3.2 Implications for environmental effects ............ 497
14.4 Roughness-induced crack closure .......................... 500
     14.4.1  Mechanism ........................................ 500
     14.4.2  Implications for tnicrostructural effects on
             threshold fatigue ................................ 501
14.5 Viscous fluid-induced crack closure ...................... 503
     14.5.1  Mechanism ........................................ 503
14.6 Phase transformation-induced crack closure ............... 504
14.7 Some basic features of fatigue crack closure ............. 505
14.8 Issues and difficulties in the quantification of crack
     closure .................................................. 506
14.9 Fatigue crack deflection ................................. 507
     14.9.1 Linear elastic analyses ........................... 508
     14.9.2 Experimental observations ......................... 511
     14.9.3  Example problem: Possible benefits of
             deflection ....................................... 512
14.10 Additional retardation mechanisms ....................... 515
     14.10.1 Crack-bridging and trapping in composite
             materials ........................................ 515
     14.10.2 On crack retardation in advanced metallic
             systems .......................................... 518
14.11 Case study: Variable amplitude spectrum loads ........... 519
14.12 Retardation following tensile overloads ................. 520
     14.12.1 Plasticity-induced crack closure ................. 521
     14.12.2 Crack tip blunting ............................... 522
     14.12.3 Residual compressive stresses .................... 523
     14.12.4 Deflection or bifurcation of the crack ........... 523
     14.12.5 Near-threshold mechanisms ........................ 524
14.13 Transient effects following compressive overloads ....... 526
     14.13.1 Compressive overloads applied to notched
             materials ........................................ 529
14.14 Load sequence effects ................................... 529
     14.14.1 Block tensile load sequences ..................... 530
     14.14.2 Tension-compression load sequences ............... 533
14.15 Life prediction models .................................. 534
     14.15.1 Yield zone models ................................ 534
     14.15.2 Numerical models of crack closure ................ 535
     14.15.3 Engineering approaches ........................... 536
     14.15.4 The characteristic approach ...................... 536
     Exercises ................................................ 537

15   Small fatigue cracks ..................................... 541
15.1 Definitions of small cracks .............................. 543
15.2 Similitude ............................................... 543
15.3 Microstructural aspects of small flaw growth ............. 544
15.4 Threshold conditions for small flaws ..................... 545
     15.4.1 Transition crack size ............................. 545
     15.4.2 Critical size of cyclic plastic zone .............. 547
     15.4.3 Slip band models .................................. 548
15.5 Fracture mechanics for small cracks at notches ........... 550
     15.5.1 Threshold for crack nucleation .................... 551
     15.5.2 Example problem: Crack growth from notches ........ 552
15.6 Continuum aspects of small flaw growth ................... 554
     15.6.1 Two-parameter characterization of short fatigue
            cracks ............................................ 554
     15.6.2 Near-tip plasticity ............................... 556
     15.6.3 Notch-tip plasticity .............................. 556
15.7 Effects of physical smallness of fatigue flaws ........... 559
     15.7.1 Mechanical effects ................................ 559
     15.7.2 Environmental effects ............................. 561
15.8 On the origins of 'short crack problem' .................. 562
15.9 Case study: Small fatigue cracks in surface coatings ..... 564
     15.9.1 Theoretical background for cracks approaching
            interfaces perpendicularly ........................ 564
     15.9.2 Application to fatigue at surface coatings ........ 566
     Exercises ................................................ 568

16   Environmental interactions: corrosion-fatigue and
     creep-fatigue ............................................ 570
16.1 Mechanisms of corrosion-fatigue .......................... 570
     16.1.1 Hydrogenous gases ................................. 571
     16.1.2 Aqueous media ..................................... 572
     16.1.3 Metal embrittlement ............................... 574
16.2 Nucleation of corrosion-fatigue cracks ................... 574
     16.2.1 Gaseous environments .............................. 575
     16.2.2 Aqueous environments .............................. 575
16.3 Growth of corrosion-fatigue cracks ....................... 577
     16.3.1 Types of corrosion-fatigue crack growth ........... 579
     16.3.2 Formation of brittle striations ................... 581
     16.3.3 Effects of mechanical variables ................... 583
     16.3.4 Models of corrosion-fatigue ....................... 585
16.4 Case study: Fatigue design of exhaust valves for cars .... 586
16.5 Fatigue at low temperatures .............................. 588
16.6 Damage and crack initiation at high temperatures ......... 589
     16.6.1 Micromechanisms of damage ......................... 590
     16.6.2 Life prediction models ............................ 594
16.7 Fatigue crack growth at high temperatures ................ 598
     16.7.1  Fracture mechanics characterization .............. 598
     16.7.2  Characterization of creep-fatigue crack growth ... 601
     16.7.3  Summary and some general observations ............ 603
16.8 Case study: Creep-fatigue in steam-power generators ...... 604
     Exercises ................................................ 608

Appendix ...................................................... 609
References .................................................... 614
Author index .................................................. 659
Subject index ................................................. 669


Архив | Естествознание | Математика | Физика | Химическая промышленность | Науки о жизни
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:31:26 2019. Размер: 33,183 bytes.
Посещение N 1402 c 13.10.2015