Colloidal quantum dot optoelectronics and photovoltaics (Cambridge, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаColloidal quantum dot optoelectronics and photovoltaics / ed. by G.Konstantatos, E.H.Sargent. - Cambridge; New York: Cambridge univ. press, 2013. - xiv, 314 p.: ill. - Incl. bibl. ref. - Ind.: p.310-314. - ISBN 978-0-521-19826-4
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
     List of contributors ...................................... xi
     Preface ................................................. xiii

1    Engineering colloidal quantum dots: synthesis, surface
     chemistry, and self-assembly ............................... 1
     Maryna I. Bodnarchuk and Maksym V. Kovalenko
1.1  Colloidal synthesis of inorganic nanocrystals and quantum
     dots ....................................................... 1
     1.1.1  Introductory remarks: history and terminology ....... 1
     1.1.2  Basics of the surfactant-assisted colloidal
            synthesis of NC quantum dots ........................ 2
1.2  Long-range ordered NC solids ............................... 7
     1.2.1  Single-component NC superlattices ................... 7
     1.2.2  Multicomponent NC superlattices ..................... 9
     1.2.3  Shape-directed self-assembly of NCs ................ 13
1.3  Surface chemistry - a gateway to applications of NCs ...... 16
     1.3.1  Organic capping ligands ............................ 16
     1.3.2  Complete removal of organic ligands and inorganic
            surface functionalization .......................... 19
     References ................................................ 20

2    Aqueous based colloidal quantum dots for optoelectronics .. 30
     Vladimir Lesnyak and Nikolai Gaponik
2.1  Introduction .............................................. 30
2.2  Aqueous colloidal synthesis of semiconductor NCs .......... 32
     2.2.1  ZnXNCs ............................................. 32
     2.2.2  Alloyed ZnSe based NCs ............................. 34
     2.2.3  CdXNCs ............................................. 35
     2.2.4  Core/shell CdTe based NCs .......................... 36
     2.2.5  Alloyed CdTe based NCs ............................. 37
     2.2.6  CdSe, CdSe/CdS NCs  ................................ 39
     2.2.7  HgX and PbX NCs .................................... 39
            2.2.7.1  HgXNCs .................................... 40
            2.2.7.2  PbXNCs .................................... 40
2.3  Assemblies and functional architectures of NCs  ........... 41
     2.3.1  LbL assembly technique ............................. 43
     2.3.2  Assembly of NCs on micro-and nano-beads ............ 46
     2.3.3  Covalent coupling of NCs ........................... 47
     2.3.4  Controllable aggregation ........................... 48
     2.3.5  Nanowires and nanosheets ........................... 49
     2.3.6  Nanocrystal based gels and aerogels ................ 49
2.4  Conclusions and outlook ................................... 50
     References ................................................ 51

3    Electronic structure and optical transitions in colloidal
     semiconductor nanocrystals ................................ 59
     Todd D. Krauss and Jeffrey J. Peterson
3.1  Introduction .............................................. 59
3.2  Foundational concepts ..................................... 60
3.3  A simple model ............................................ 65
3.4  Experimental evidence for quantum confinement ............. 67
3.5  Engineered quantum dot structures ......................... 71
3.6  Advanced theoretical treatments ........................... 73
3.7  Atomistic approaches ...................................... 76
3.8  Current challenges and future outlook ..................... 80
     References ................................................ 81

4    Charge and energy transfer in polymer/nanocrystal
     blends: physics and devices ............................... 87
     Kevin M. Noone and David S. Ginger
4.1  Introduction .............................................. 87
4.2  A brief history of QD/polymer optoelectronics ............. 88
     4.2.1  Quantum dot light emitting diodes (QD-LEDs) -
            size-tunable emission across the spectrum .......... 88
     4.2.2  Quantum dot photovoltaics (QD-PV) and
            photodetectors -  converting photons to
            electrons .......................................... 90
            4.2.2.1  QD-PVs .................................... 90
            4.2.2.2  Quantum dot photodetectors ................ 93
4.3  The QD-organic interface - ligands and more ............... 96
     4.3.1  Ligands ............................................ 96
     4.3.2  Energetics ......................................... 98
            4.3.2.1  Charge transfer and Forster resonance
                     energy transfer (FRET) in QD-LEDs ......... 99
            4.3.2.2  Type II heterojunctions and charge
                     transfer in QD-PVs ........................ 99
4.4  Conclusion and future outlook ............................ 104
     References ............................................... 105

5    Multiple exciton generation in semiconductor quantum
     dots and electronically coupled quantum dot arrays for
     application to third-generation photovoltaic solar
     cells .................................................... 112
     Matthew C. Beard, Joey M. Luther, and Arthur J. Nozik
5.1  Introduction ............................................. 112
5.2  Relaxation dynamics of photogenerated electron-hole
     pairs in QDs ............................................. 115
     5.2.1  Transient absorption spectroscopy (ТА) ............ 117
5.3  Multiple exciton generation (MEG) ........................ 121
     5.3.1  MEG in QDs ........................................ 121
     5.3.2  MEG controversy and role of photocharging ......... 125
     5.3.3  MEG efficiency and comparison to impact
            ionization in bulk semiconductors ................. 128
5.4  QD solar cells ........................................... 131
     5.4.1  MEG photocurrent and determination of the
            internal quantum efficiency (IQE) in QD solar
            cells ............................................. 133
5.5  QD arrays ................................................ 136
     5.5.1   MEG in PbSe QD arrays ............................ 137
5.6  Conclusions .............................................. 140
     References ............................................... 141

6    Colloidal quantum dot light emitting devices ............. 148
     Vanessa Wood, Matthew Panzer, Seth-Coe Sullivan, and
     Vladimir Bulovic
6.1  Introduction ............................................. 148
6.2  Why QDs for LEDs? ........................................ 148
     6.2.1  Saturated colors .................................. 148
     6.2.2  Solution processable .............................. 150
     6.2.3  Stability ......................................... 150
6.3  QD and device physics influencing LED performance ........ 151
     6.3.1  Quantifying the luminescence efficiency ........... 151
     6.3.2  QD surface states ................................. 152
     6.3.3  QD charging ....................................... 153
     6.3.4  Charge transport in QD films ...................... 154
     6.3.5  Field driven luminescence quenching ............... 154
     6.3.6  Isolating the effects of charge and field ......... 155
6.4  Characterizing QD-LEDs ................................... 157
6.5  QD-LEDs based on optical downconversion .................. 160
6.6  QD-LEDs based on organic charge transport layers ......... 161
     6.6.1  Deposition of QDs: spin casting, phase
            separation, and microcontact printing ............. 161
     6.6.2  Operation of colloidal QD-LEDs .................... 163
6.7  QD-LEDs with inorganic charge transport layers ........... 165
     6.7.1  Reasons for inorganic charge transport layers ..... 165
     6.7.2  Fabrication of all inorganic QD-LEDs .............. 165
     6.7.3  Operation of QD-LED with inorganic charge
            transport layers .................................. 166
     6.7.4  Improving the efficiency of QD-LEDs with
            inorganic charge transport layers ................. 167
6.8  Future work .............................................. 167
     References ............................................... 168

7    Colloidal quantum dot photodetectors ..................... 173
     Gerasimos Konstantatos
7.1  Introduction ............................................. 173
     7.1.1  Applications of top-surface photodetectors ........ 173
     7.1.2  Colloidal quantum dots (CQDs) for light
            detection ......................................... 174
7.2  Fundamentals of photodetectors ........................... 175
     7.2.1  Types of photodetectors ........................... 175
     7.2.2  Figures of merit .................................. 176
7.3  Prior art in solution-processed photodetectors ........... 177
7.4  Solution-processed QD photoconductors .................... 179
     7.4.1  Photoconductive gain and noise in PbS QD
            photodetectors .................................... 179
     7.4.2  Visible-wavelength and multispectral
            photodetection .................................... 183
     7.4.3  Control of temporal response in photoconductive
            detectors via trap state engineering .............. 185
7.5  CQD based phototransistors ............................... 187
7.6  CQD photodiodes .......................................... 190
7.7  Conclusions - summary .................................... 193
     References ............................................... 195

8    Optical gain and lasing in colloidal quantum dots ........ 199
     Sjoerd Hoogland
8.1  Introduction ............................................. 199
8.2  Optical properties of colloidal nanocrystal quantum
     dots ..................................................... 200
8.3  Carrier dynamics in colloidal quantum dots ............... 202
     8.3.1  Auger recombination ............................... 205
     8.3.2  Poisson statistics and state filling .............. 206
8.4  Gain in solid state nanocrystal quantum dot films ........ 207
     8.4.1  Amplified spontaneous emission (ASE) .............. 208
     8.4.2  Variable strip length (VSL) for optical gain
            measurements ...................................... 209
     8.4.3  Experimental techniques for waveguide loss
            measurement in colloidal quantum dot films ........ 209
     8.4.4  Modal gain in visible colloidal quantum dots
            based on cadmium chalcogenides .................... 211
     8.4.5  Modal gain in infrared colloidal quantum dots
            based on lead chalcogenides ....................... 213
8.5  Spectral and temporal characteristics of optical gain
     in nanocrystal quantum dots .............................. 214
     8.5.1  Visible colloidal quantum dots based on cadmium
            chalcogenides ..................................... 214
     8.5.2  Infrared colloidal quantum dots based on lead
            chalcogenides ..................................... 218
8.6  Colloidal nanocrystal lasers ............................. 221
     8.6.1  Microcapillary resonators ......................... 223
     8.6.2  Microsphere resonators ............................ 224
     8.6.3  Distributed feedback resonators ................... 225
     8.6.4  Microtoroid resonators ............................ 225
     8.6.5  Other resonators .................................. 226
8.7  Future prospects ......................................... 226
     8.7.1  Single exciton gain ............................... 226
     References ............................................... 229

9    Heterojunction solar cells based on colloidal quantum
     dots ..................................................... 233
     Jeffrey J. Urban and Delia J. Milliron
9.1  Introduction ............................................. 233
9.2  Chemistry of CQDs for solar cells ........................ 234
9.3  Physics of CQDs for solar cells .......................... 238
     9.3.1  Electronic structure evolution in low
            dimensional systems ............................... 238
     9.3.2  Fundamentals of light-matter interactions in QDs .. 240
     9.3.3  Selection rules and the complications of Я ........ 241
9.4  Optical and electronic properties of CQD films for
     solar cells .............................................. 241
9.5  Device physics and design of CQD heterojunction solar
     cells .................................................... 246
9.6  Technology and scientific outlook ........................ 250
     References ............................................... 251

10   Solution-processed infrared quantum dot solar cells ...... 256
     Jiang Tang and Edward H. Sargent
10.1 Introduction ............................................. 256
10.2 Infrared CQDs for the full absorption of solar spectrum .. 257
     10.2.1 Bandgap engineering for the broadband solar
            spectrum match .................................... 257
     10.2.2 Light absorption in CQD film ...................... 260
10.3 Semiconductor solar cell fundamentals .................... 260
     10.3.1 Fundamentals of p-n junction ...................... 260
     10.3.2 Fundamentals of solar cells ....................... 263
     10.3.3 Implications for CQD solar cell optimization ...... 264
10.4 Electrical properties of CQD films ....................... 265
     10.4.1 Measurements of electrical properties of CQD
            films ............................................. 265
     10.4.2 Transport in CQD film ............................. 269
     10.4.3 CQD passivation ................................... 272
     10.4.4 CQD film doping ................................... 275
     10.4.5 Dielectric constant of CQD film ................... 276
10.5 Progress in CQD solar cell performance ................... 276
     10.5.1 Schottky solar cells .............................. 276
     10.5.2 Heterojunction solar cells ........................ 279
10.6 Device stability ......................................... 283
10.7 Perspectives and conclusions ............................. 285
     References ............................................... 286

11   Semiconductor quantum dot sensitized TiO2 mesoporous
     solar cells .............................................. 292
     Lioz Etgar, Hyo Joong Lee, Sang II Seok, 
     Md.K. Nazeeruddin, and Michael Grätzel
11.1 Introduction ............................................. 292
11.2 Mesoscopic PbS quantum dot/TiO2 heterojunction solar
     cells .................................................... 294
     11.2.1 Solid-state PbS/TiO2 heterojunction solar cell .... 299
11.3 QD/TiO2 mesoporous solar cell using the SILAR process .... 301
11.4 Cobalt complex-based redox couples in CQD-TiO2
     mesoporous solar cells ................................... 305
     References ............................................... 308

     Index .................................................... 310


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:27:10 2019. Размер: 19,083 bytes.
Посещение N 1194 c 09.12.2014