Doraiswamy L.K. Chemical reaction engineering: beyond the fundamentals (Boca Raton, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDoraiswamy L.K. Chemical reaction engineering: beyond the fundamentals / L.K.Doraiswamy, D.Uner. - Boca Raton: Taylor & Francis, 2014. - xlvi, 522 p.: ill. - Incl. bibl. ref. - Sub. ind.: p.503-514. - Auth. ind.: p.516-522. - ISBN 978-1-4398-3122-9
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ....................................................... xxv
Notations .................................................... xxxi
Overview ................................................... xxxvii

PART I  FUNDAMENTALS REVISITED
   Objectives ................................................... 1
   Introduction ................................................. 1
   The essential minimum of chemical reaction engineering ....... 2
   The skill development ........................................ 2
   Getting started .............................................. 2
   Warm-up questions ............................................ 3
      Qualitative ............................................... 3
      Quantitative .............................................. 3
1  Reactions and reactors: Basic concepts ....................... 5
   Chapter objectives ........................................... 5
   Introduction ................................................. 5
   Reaction rates ............................................... 5
      Different definitions of the rate ......................... 6
      Basic rate equation ....................................... 8
   Stoichiometry of the rate equation ........................... 9
      Basic relationships ....................................... 9
      Conversion-concentration relationships ................... 10
      Variable-density reactions ............................... 11
      Reactors ................................................. 12
      Batch reactor ............................................ 13
         Reactions without volume change ....................... 14
         Reactions with volume change .......................... 14
      Nonisothermal operation .................................. 16
         Optimal operating policies ............................ 18
      Plug-flow reactors ....................................... 19
         Basic PFR equation .................................... 20
         Design equations ...................................... 21
         Nonisothermal operation ............................... 21
      Perfectly mixed flow reactor (MFR) ....................... 23
         Basic CSTR equation ................................... 23
      Nonisothermal operation .................................. 24
   Multiple steady states ...................................... 26
      MSS in a CSTR ............................................ 26
      Adiabatic CSTR ........................................... 27
         Stability of the steady states ........................ 28
      Comparison of BR, PFR, and MFR ........................... 29
   Explore yourself ............................................ 30
   References .................................................. 31
   Bibliography ................................................ 31
2  Complex reactions and reactors .............................. 33
   Chapter objectives .......................................... 33
   Introduction ................................................ 33
   Reduction of complex reactions .............................. 34
      Stoichiometry of simple and complex reactions ............ 34
      Mathematical representation of simple and complex
      reactions ................................................ 35
      Independent reactions .................................... 36
   Rate equations .............................................. 38
      The concept of extent of reaction ........................ 38
      Determination of the individual rates in a complex
      reaction ................................................. 39
   Selectivity and yield ....................................... 39
      Definitions .............................................. 40
      Analytical solutions ..................................... 40
         Maximizing selectivity in a complex reaction:
         Important considerations .............................. 43
      Multistep reactions ...................................... 46
         Definitions ........................................... 46
   Yield versus number of steps ................................ 47
   Reactor design for complex reactions ........................ 48
      Batch reactor design based on number of components ....... 48
      Use of extent of reaction or reaction coordinates ........ 50
      Plug-flow reactor ........................................ 52
      Continuous stirred tank reactor .......................... 53
   Reactor choice for maximizing yields/selectivities .......... 56
      Parallel reactions (nonreacting products) ................ 56
         The general case ...................................... 56
         Effect of reaction order .............................. 58
         One of the reactants undergoes a second reaction ...... 59
      Parallel-consecutive reactions ........................... 59
   Plug-flow reactor with recycle .............................. 60
      The basic design equation ................................ 60
      Optimal design of RFR .................................... 62
      Use of RFR to resolve a selectivity dilemma .............. 64
   Semibatch reactors .......................................... 64
      Constant-volume reactions with constant rates of
      addition and removal: Scheme 1 ........................... 64
      Variable-volume reactor with constant rate of inflow:
      Scheme 2 ................................................. 66
      Variable-volume reactor with constant rate of outflow
      of one of the products: Scheme 3 ......................... 67
      General expression for an SBR for multiple reactions
      with inflow of liquid and outflow of liquid and vapor:
      Scheme 4 ................................................. 70
      Nonisothermal operation .................................. 71
   Optimum temperatures/temperature profiles for maximizing
   yields/selectivities ........................................ 71
      Optimum temperatures ..................................... 72
      Optimum temperature and concentration profiles in a PFR .. 72
         Parallel reactions .................................... 72
         Consecutive reactions ................................. 73
         Extension to a batch reactor .......................... 73
   Explore yourself ............................................ 74
   References .................................................. 75
   Bibliography ................................................ 76

Interlude I 
   Reactive distillation ....................................... 77
   Membrane reactors ........................................... 78
      Inorganic membranes for organic reactions/synthesis ...... 78
         Potentially exploitable features of membranes ......... 79
         Equilibrium shift in membrane reactors ................ 79
         Controlled addition of reactants ...................... 80
         Preventing excess reactant "slip" in reactions
         requiring strict stoichiometric feeds ................. 80
         Mimicking trickle-bed operation with improved
         performance ........................................... 80
         Coupling of reactions ................................. 80
         Hybridization ......................................... 80
      Phase transfer catalysis ................................. 81
      References ............................................... 82
3  Nonideal reactor analysis Chapter objectives ................ 85
   Introduction ................................................ 85
      Two limits of the ideal reactor .......................... 86
      Plug-flow reactors with recycle .......................... 86
      Tanks-in-series model .................................... 87
   Nonidealities defined with respect to the ideal reactors .... 88
      Nonidealities in tubular reactors ........................ 88
         Axial dispersion model ................................ 89
         Nonidealities in MFR .................................. 90
   Residence time distribution ................................. 91
      Theory ................................................... 91
      Types of distribution .................................... 93
   Concept of mixing ........................................... 95
      Regions of mixing ........................................ 95
      Fully segregated flow .................................... 97
      Micromixing policy ....................................... 98
      Models for partial mixing ................................ 99
         Axial dispersion model ................................ 99
         Tanks-in-series model ................................ 100
         Models for partial micromixing ....................... 100
         Degree of segregation defined by the age of the
         fluid at a point ..................................... 101
   Turbulent mixing models .................................... 101
      Characteristic timescales ............................... 102
      Engulfment-deformation diffusion model .................. 104
      Interaction by exchange with a mean ..................... 104
      Zone model .............................................. 105
      Joint PDF ............................................... 105
   Practical implications of mixing in chemical synthesis ..... 106
      General considerations .................................. 106
      Dramatic illustration of the role of addition sequence
      of reagents ............................................. 108
   Explore yourself ........................................... 109
   References ................................................. 110
   Bibliography ............................................... 110

Interlude II .................................................. 111
   Limits of mean field theory ................................ 111
   The predator-prey problem or surface mixing ................ 111
   Mixing problem addressed ................................... 113
      Short contact time reactors ............................. 113
      Microfluidic reactors ................................... 114
         Passive devices for mixing and pumping ............... 115
      Knudsen pump ............................................ 115
   Mixing ..................................................... 115
      Slug flow as a mixer .................................... 115
      Dean flow as a static mixer ............................. 115
   Elastic turbulence ......................................... 116
   References ................................................. 116

PART II  BUILDING ON FUNDAMENTALS
   Introduction ............................................... 117
   The different tools of the trade ........................... 117
      Relationship between thermodynamics and chemical
      reaction engineering .................................... 118
      Relationship between transport phenomena and chemical
      reaction engineering .................................... 118
      Relationship between chemical reaction engineering and
      kinetics ................................................ 118
      Chemical reaction engineering as an experimental and
      theoretical science ..................................... 118
4  Rates and equilibria: The thermodynamic and
   extrathermodynamic approaches .............................. 121
   Chapter objectives ......................................... 121
   Introduction ............................................... 121
      Basic thermodynamic relationships and properties ........ 122
      Basic relationships ..................................... 122
      Heats of reaction, formation, and combustion ............ 122
      Implications of liquid phase reactions .................. 124
      Free energy change and equilibrium constant ............. 124
         Standard free energy change and equilibrium
         constant ............................................. 124
         Equilibrium compositions in gas phase reactions ...... 126
         Accounting for condensed phase(s) .................... 126
      Complex equilibria ...................................... 128
         Simultaneous solution of equilibrium equations ....... 128
         Extension to a nonideal system ....................... 129
         Minimization of free energy .......................... 130
   Thermodynamics of reactions in solution .................... 131
      Partial molar properties ................................ 131
      Medium and substituent effects on standard free energy
      change, equilibrium constant, and activity coefficient .. 132
         General considerations ............................... 132
         Solvent and solute operators ......................... 133
      Comments ................................................ 134
   Extrathermodynamic approach ................................ 134
      Basic principles ........................................ 134
      Group contributions or additivity principle ............. 135
   Extrathermodynamic relationships between rate and
   equilibrium parameters ..................................... 136
      Polanyi and Brønsted relations .......................... 136
        Hammett relationship for dissociation constants ....... 137
      Extrathermodynamic approach to selectivity .............. 138
   Theoretical analysis ....................................... 138
      Thermodynamics of adsorption ............................ 139
      Henry's law ............................................. 141
      Langmuir isotherm ....................................... 141
      Inhomogeneities expressed in terms of a site-energy
      distribution ............................................ 142
      Two-dimensional equations of state and their
      corresponding adsorption isotherms ...................... 143
   Appendix ................................................... 144
      Derivation of chemical equilibrium relationships for
      simple reactions ........................................ 144
         Reactions in gas phase ............................... 146
         Reactions in liquid phase ............................ 146
   Explore yourself ........................................... 147
   References ................................................. 147
   Bibliography ............................................... 148

Interlude III 
   Reactor design for thermodynamically limited reactions ..... 149
      Kinetics ................................................ 149
     Optimization of temperatures and pressures ............... 150
   References ................................................. 152
5  Theory of chemical kinetics in bulk and on the surface ..... 153
   Chapter objectives ......................................... 153
   Chemical kinetics .......................................... 153
   Collision theory ........................................... 154
   Transition state theory .................................... 155
   Proposing a kinetic model .................................. 158
   Brief excursion for the classification of surface
   reaction mechanisms ........................................ 159
      Langmuir-Hinshelwood-Hougen-Watson models ............... 159
         Langmuir isotherm .................................... 159
         Rate-determining step ................................ 160
         Basic procedure ...................................... 160
      Eley-Rideal mechanism ................................... 165
      Mars-van Krevelen mechanism ............................. 166
      Michelis-Menten mechanism ............................... 168
         Influence of surface nonideality ..................... 168
            Paradox of heterogeneous kinetics ................. 169
   Microkinetic analysis ...................................... 169
      Postulate a mechanism ................................... 171
      Determine the kinetic parameters ........................ 171
      Simplify the mechanism .................................. 171
      Compare the model predictions with the kinetic data ..... 172
   Explore yourself ........................................... 174
   References ................................................. 175
   Bibliography ............................................... 175
6  Reactions with an interface: Mass and heat transfer
   effects .................................................... 177
   Chapter objectives ......................................... 177
   Introduction ............................................... 177
      Diffusivity ............................................. 178
      Diffusivities in gases .................................. 178
      Diffusivities in liquids ................................ 179
      Effective diffusivity ................................... 179
   Transport between phases ................................... 180
      General remarks ......................................... 180
      Film theory ............................................. 182
      Penetration theory ...................................... 183
      Surface renewal theory .................................. 184
      Characteristic times for diffusion, reaction, and mass
      transfer ................................................ 185
      Two-film theory of mass and heat transfer for fluid-
      fluid reactions in general .............................. 185
         Mass transfer ........................................ 185
         Heat transfer ........................................ 186
   Mass transfer across interfaces: Fundamentals .............. 187
   Solid catalyzed fluid reactions ............................ 189
      Overall scheme .......................................... 189
         Role of diffusion in pellets: Catalyst
         effectiveness ........................................ 189
         First-order isothermal reaction in a spherical
         catalyst ............................................. 191
      Weisz modulus: Practical useful quantity ................ 196
      Nonisothermal effectiveness factors ..................... 197
         Multicomponent diffusion ............................. 199
         Miscellaneous effects ................................ 199
      Extension to complex reactions .......................... 200
   Noncatalytic gas-solid reactions ........................... 200
   Gas-liquid reactions in a slab ............................. 204
      Two-film theory ......................................... 205
         Slow reactions ....................................... 205
         Instantaneous reactions .............................. 206
   Effect of external mass and heat transfer .................. 209
      External effectiveness factor ........................... 209
      Combined effects of internal and external diffusion ..... 209
      Relative roles of mass and heat transfer in internal
      and external diffusion .................................. 210
         Gas phase reactants .................................. 210
         Liquid phase reactants ............................... 211
   Regimes of control ......................................... 212
   Explore yourself ........................................... 213
   References ................................................. 214
7  Laboratory reactors: Collection and analysis of the data ... 217
   Chapter objectives ......................................... 217
   Chemical reaction tests in a laboratory .................... 217
   A perspective on statistical experimental design ........... 218
   Batch laboratory reactors .................................. 220
   Rate parameters from batch reactor data .................... 221
      From concentration data ................................. 221
      From pressure data ...................................... 223
   Flow reactors for testing gas-solid catalytic reactions .... 225
      Differential versus integral reactors ................... 226
      Eliminating or accounting for transport disguises ....... 229
         Eliminating the film mass transfer resistance ........ 229
         Eliminating the pore diffusion resistances ........... 230
         Eliminating axial dispersion effects ................. 231
         Koros-Nowak criterion ................................ 231
         Catalyst dilution for temperature uniformity ......... 231
      Gradientless reactors ................................... 231
   Transport disguises in perspective ......................... 231
      Guidelines for eliminating or accounting for transport
      disguises ............................................... 234
   Analyzing the data ......................................... 235
      Modeling of solid catalyzed reactions ................... 235
         The overall scheme ................................... 235
         LHHW models .......................................... 236
         Selection of the most plausible model ................ 236
      Influence of surface nonideality ........................ 239
   Explore yourself ........................................... 239
   References ................................................. 240

PART III  BEYOND THE FUNDAMENTALS
   Objectives ................................................. 243
   Introduction ............................................... 244
   The different tools of the trade ........................... 244
      Process intensification ................................. 246
      Microfluidics ........................................... 247
      Membrane reactors ....................................... 248
      Combo reactors .......................................... 249
      Homogeneous catalysis ................................... 249
      Phase-transfer catalysis ................................ 249
   References ................................................. 249
8  Fixed-bed reactor design for solid catalyzed fluid-phase
   reactions .................................................. 251
   Chapter objectives ......................................... 251
   Introduction ............................................... 251
      Effect of catalyst packing in a tubular reactor ......... 251
      Fixed-bed reactor ....................................... 252
   Nonisothermal, nonadiabatic, and adiabatic reactors ........ 254
      Design methodologies for NINA-PBR ....................... 256
         Quasi-continuum models ............................... 257
         Cell model ........................................... 257
      Models based on the pseudo-homogeneous assumption ....... 257
      Homogeneous, pseudo-homogeneous, and heterogeneous
      models .................................................. 257
         ID pseudo-homogeneous nonisothermal, nonadiabatic
         flow ................................................. 260
         Reduction to isothermal operation .................... 261
         Momentum balance ..................................... 261
         The basic model: 2D pseudo-homogeneous
         nonisothermal, nonadiabatic with no axial diffusion .. 262
         Extension to nonideal models with and without
         heterogeneity ........................................ 265
   Adiabatic reactor .......................................... 266
      The approach ............................................ 266
         A unique conversion-temperature relationship ......... 266
         Single-bed reactor ................................... 268
         Multiple-bed reactor ................................. 270
      A simple graphical procedure ............................ 273
         Strategies for heat exchange ......................... 273
   Choice between NINA-PBR and A-PBR .......................... 274
      Some practical considerations ........................... 275
         Backmixing or axial dispersion ....................... 275
         Nonuniform catalyst distributions between tubes ...... 275
      Scale-up considerations ................................. 276
   Alternative fixed-bed designs .............................. 276
      Radial-flow reactors .................................... 276
      Material, momentum, and energy balances ................. 279
         Material balance ..................................... 279
         Mass balance ......................................... 279
         Momentum balance ..................................... 279
         Some important observations .......................... 279
      Catalytic wire-gauze reactors ........................... 280
   Explore yourself ........................................... 281
   References ................................................. 282
   Bibliography ............................................... 282
9  Fluidized-bed reactor design for solid catalyzed fluid-
   phase reactions ............................................ 285
   Chapter objectives ......................................... 285
   General comments ........................................... 285
   Fluidizatiom Some basics ................................... 286
      Minimum fluidization velocity ........................... 286
   Two-phase theory of fluidization ........................... 287
   Geldart's classification ................................... 287
      Classification of fluidized-bed reactors ................ 288
      Velocity limits of a bubbling bed ....................... 289
         Fluid mechanical models of the bubbling bed .......... 291
         Complete modeling of the fluidized-bed reactor ....... 291
   Bubbling bed model of fluidized-bed reactors ............... 292
      Bubbling bed ............................................ 292
      Bubble rise velocity .................................... 293
      Main features ........................................... 293
         Mass transfer between bubble and emulsion ............ 294
   Solids distribution ........................................ 294
      Estimation of bed properties ............................ 295
      Heat transfer ........................................... 295
   Calculation of conversion .................................. 297
      End region models ....................................... 297
         Dilute bed region .................................... 297
         Grid or jet region ................................... 298
      Practical considerations ................................ 299
      Recommended scale-up procedure .......................... 300
   Strategies to improve fluid-bed reactor performance ........ 302
      Packed fluidized-bed reactors ........................... 303
         Reactor model for packed fluidized beds .............. 303
      Staging of catalyst ..................................... 305
   Extension to other regimes of fluidization types of
   reactors ................................................... 306
      Turbulent bed reactor ................................... 307
      Fast fluidized-bed reactor .............................. 307
      Transport (or pneumatic) reactor ........................ 308
      Circulation systems ..................................... 309
   Deactivation control ....................................... 310
      Heat transfer controlled ................................ 312
      Reactor choice for a deactivating catalyst .............. 312
         Basic equation ....................................... 313
         Fixed-bed reactor .................................... 314
         Fluidized-bed reactor ................................ 315
         Moving bed reactor ................................... 315
   Some practical considerations .............................. 318
      Slugging ................................................ 318
      Defluidization of bed: Sudden death ..................... 318
      Gulf streaming .......................................... 318
      Effects of fines ........................................ 318
      Start-up ................................................ 319
   Fluidized-bed versus fixed-bed reactors .................... 319
   Explore yourself ........................................... 320
   References ................................................. 321
10 Gas-solid noncatalytic reactions and reactors .............. 325
   Chapter objectives ......................................... 325
   Introduction ............................................... 325
   Modeling of gas-solid reactions ............................ 326
      Shrinking core model .................................... 327
      Volume reaction model ................................... 329
      Zone models ............................................. 331
      77?e particle-pellet or grain models .................... 332
   Other models ............................................... 334
   Extensions to the basic models ............................. 334
      Bulk-flow or volume-change effects ...................... 334
      Fffect f of temperature change .......................... 335
   Models that account for structural variations .............. 336
      Effect of reaction ...................................... 336
      Effect of sintering ..................................... 338
   A general model that can be reduced to specific ones ....... 338
   Gas-solid noncatalytic reactors ............................ 339
      Fixed-bed reactors ...................................... 340
      Moving-bed reactors ..................................... 343
      Fluidized-bed reactors .................................. 345
   References ................................................. 345
11 Gas-liquid and liquid-liquid reactions and reactors ........ 347
   Chapter objectives ......................................... 347
   Introduction ............................................... 347
      Diffusion accompanied by an irreversible reaction of
      general order ........................................... 350
         Diffusion and reaction in series with no reaction
         in film: Regimes 1 and 2 (very slow and slow
         reactions), and regimes between 1 and 2 .............. 350
         Regimes 1 and 2: Very slow and slow reactions ........ 350
         Regimes between 1 and 2 .............................. 352
      Diffusion and reaction in film, followed by negligible
         or finite reaction in the bulk: Regime 3 (fast
         reaction), and regime covering 1, 2, and 3 ........... 352
         Reaction entirely in film ............................ 352
         Reactions both in film and bulk (regimes 1-2-3) ...... 353
   Measurement of mass transfer coefficients .................. 354
      Microfluidic devices .................................... 354
   Reactor design ............................................. 355
   A generalized form of equation for all regimes ............. 356
      Regime 1: Very slow reaction ............................ 356
      Regime 2 and regime between 1 and 2: Diffusion in film
      without and with reaction in the bulk ................... 356
      Regime 3: Fast reaction ................................. 357
      Regime between 2 and 3 .................................. 357
      Regime 4: Instantaneous reaction ........................ 357
   Classification of gas-liquid contactors .................... 358
      Classification-1 (based on manner of phase contact) ..... 358
      Classification-2 (based on the manner of energy
      delivery) ............................................... 359
      Mass transfer coefficients and interfacial areas of
      some common contactors .................................. 359
      Role of backmixing in different contactors .............. 359
   Reactor design for gas-liquid reactions .................... 361
      The overall strategy .................................... 361
      Calculation of reactor volume ........................... 361
         Case 1: Plug gas, plug liquid, and countercurrent
                 steady state ................................. 363
         Case 2: Same as case 1 but with cocurrent flow ....... 363
         Case 3: Plug gas, mixed liquid, and steady state ..... 364
         Case 4: Mixed gas, mixed liquid, and steady state .... 364
         Case 5: Mixed gas, batch liquid, and unsteady state .. 364
         Comments ............................................. 365
   Reactor choice ............................................. 369
      The criteria ............................................ 369
      Volume minimization criterion ........................... 369
         General discussion ................................... 369
         Limitations of volume minimization ................... 371
         Steps in volume minimization ......................... 371
      Energy minimization criteria ............................ 372
         Criterion 2(a): Homogeneous regime (regime 1) ........ 372
         Criterion 2(b): Heterogeneous regime (regimes 2-4) ... 374
         Comparison of criteria ............................... 374
      Liquid-liquid contactors ................................ 375
         Classification of liquid-liquid reactors ............. 375
         Values of mass transfer coefficients and
         interfacial areas for different contactors ........... 376
         Calculation of reactor volume/reaction time .......... 377
   Stirred tank reactor. Some practical considerations ........ 379
   References ................................................. 380
12 Multiphase reactions and reactors .......................... 383
   Chapter objectives ......................................... 383
   Introduction ............................................... 383
   Design of three-phase catalytic reactors ................... 383
      The approach ............................................ 383
      Semibatch reactors: Design equations for (1,0)- and
      (1,1)-order reactions ................................... 384
      Continuous reactors ..................................... 385
   Types of three-phase reactors .............................. 387
      Mechanically agitated slurry reactors ................... 389
         Mass transfer ........................................ 389
         Minimum speed for complete suspension ................ 390
         Gas holdup ........................................... 390
         Controlling regimes in an MASR ....................... 390
      Bubble column slurry reactors ........................... 390
         Regimes of flow ...................................... 391
         Mass transfer ........................................ 391
         Minimum velocity for complete solids suspension ...... 392
         Gas holdup ........................................... 392
   Loop slurry reactors ....................................... 396
      Types of loop reactors .................................. 396
         Mass transfer ........................................ 397
   Trickle bed reactors (TBRs) ................................ 397
      Regimes of flow ......................................... 397
      Mass transfer ........................................... 398
      Controlling regimes in TBRs ............................. 398
   Collection and interpretation of laboratory data for
   three-phase catalytic reactions ............................ 398
      Experimental methods .................................... 398
      Effect of temperature ................................... 398
      Interpretation of data .................................. 399
   Three-phase noncatalytic reactions ......................... 401
      Solid slightly soluble .................................. 402
         Negligible dissolution of solid in the gas-liquid
         film ................................................. 402
         Significant dissolution of solid in the gas-liquid
         film ................................................. 403
         Solid insoluble ...................................... 403
   References ................................................. 408
   Bibliography ............................................... 409
13 Membrane-assisted reactor engineering ...................... 411
   Introduction ............................................... 411
      General considerations .................................. 411
   Major types of membrane reactors ........................... 411
   Modeling of membrane reactors .............................. 414
      Packed-bed inert selective membrane reactor with
      packed catalyst (IMR-P) ................................. 414
         Model equations ...................................... 415
         Extension to consecutive reactions ................... 420
      Fluidized-bed inert selective membrane reactor (IMR-F) .. 420
      Catalytic selective membrane reactor (CMR-E) ............ 421
         Model equations ...................................... 422
         Main features of the CMR-E ........................... 422
      Packed-bed catalytic selective membrane reactor
      (CMR-P) ................................................. 423
      Catalytic nonselective membrane reactor (CNMR-E) ........ 424
      Catalytic nonselective hollow membrane reactor for
      multiphase reactions (CNHMR-MR) ......................... 424
      Immobilized enzyme membrane reactor ..................... 425
   Operational features ....................................... 425
      Combining exothermic and endothermic reactions .......... 425
         Controlled addition of one of the reactants in
         a bimolecular reaction using an IMR-P ................ 426
  Effect of tube and shell side flow conditions ............... 428
  Comparison of reactors ...................................... 428
      Effect (1) .............................................. 429
      Effect (2) .............................................. 429
      Combined effect ......................................... 429
   Examples of the use of membrane reactors in organic
   technology/synthesis ....................................... 429
      Small- and medium-volume chemicals ...................... 430
         Vitamin К ............................................ 430
         Linalool (a fragrance) ............................... 431
      Membrane reactors for economic processes (including
      energy integration) ..................................... 431
   References ................................................. 432
14 Combo reactors: Distillation column reactors ............... 435
   Distillation column reactor ................................ 436
   Enhancing role of distillation: Basic principle ............ 436
      Batch reactor with continuous removal of product ........ 436
         Case 1: Accumulation of S ............................ 437
         Case 2: S is not completely vaporized ................ 438
         Packed DCR ........................................... 439
   Overall effectiveness factor in a packed DCR ............... 441
      Residue curve map (RCM) ................................. 442
         Design methodology ................................... 443
         Generating residual curve maps ....................... 445
   Distillation-reaction ...................................... 447
      Dissociation-extractive distillation .................... 448
         Basic principle ...................................... 448
         Theory ............................................... 448
   References ................................................. 451
15  Homogeneous catalysis ..................................... 453
   Introduction ............................................... 453
      General ................................................. 453
   Formalisms in transition metal catalysis ................... 453
      Uniqueness of transition metals ......................... 453
      Oxidation state of a metal .............................. 455
      Coordinative unsaturation, coordination number, and
      coordination geometry ................................... 457
      Ligands and their role in transition metal catalysis .... 457
      Electron rules ("electron bookkeeping") ................. 459
         18-electron rule ..................................... 459
         16-18-electron rule .................................. 460
   Operational scheme of homogeneous catalysis ................ 460
   Basic reactions of homogeneous catalysis ................... 461
      Reactions of ligands (mainly replacement) ............... 461
      Elementary reactions (or activation steps) .............. 462
         Coordination reactions ............................... 462
         Addition reactions ................................... 462
      Main reactions .......................................... 463
         Insertion ............................................ 463
         Elimination .......................................... 464
   Main features of transition metal catalysis in organic
   synthesis: A summary ....................................... 464
   A typical class of industrial reactions: Hydrogenation ..... 465
      Hydrogenation by Wilkinson's catalyst ................... 465
      Wilkinson's catalyst .................................... 465
         The catalytic cycle .................................. 466
         Kinetics and modeling ................................ 466
      A general hydrogenation model ........................... 467
   General kinetic analysis ................................... 468
      Intrinsic kinetics ...................................... 468
         Multistep control .................................... 468
      Role of diffusion ....................................... 469
      Complex kinetics—Main issue ............................. 469
      Reactions involving one gas and one liquid .............. 470
         Regimes 1 and 2 ...................................... 470
         Regime between 1 and 2 (reaction in bulk) ............ 470
         Regime 3 (reaction in film) .......................... 472
      Two gases and a liquid .................................. 473
   References ................................................. 473
16 Phase-transfer catalysis ................................... 475
   Introduction ............................................... 475
      What is PTC? ............................................ 475
   Fundamentals of PTC ........................................ 476
      Classification of PTC systems ........................... 476
      Phase-transfer catalysts ................................ 477
   Mechanism of PTC ........................................... 478
      Liquid-liquid PTC ....................................... 478
      Solid-Liquid PTC ........................................ 478
      Solid-supported PTC or triphase catalysis (TPC) ......... 481
   Modeling of PTC reactions .................................. 482
      LLPTC models ............................................ 483
      SLPTC models ............................................ 484
         Interpretation of the role of diffusion:
         A cautionary note .................................... 486
      Supported PTC (TPC) ..................................... 487
      Kinetic mechanism of TPC systems ........................ 488
      Methodology for modeling solid-supported PTC reactions .. 489
      Supported PTC with LHHW kinetics ........................ 490
   "Cascade engineered" PTC process ........................... 494
   References ................................................. 495
17 Forefront of the chemical reaction engineering field ....... 497
   Objective .................................................. 497
   Introduction ............................................... 497
   Resource economy ........................................... 497
      Carbon and hydrogen ..................................... 498
      Bio-renewables .......................................... 498
   Energy economy ............................................. 499
      Heat integration in microreactors ....................... 500
      Sonochemical reaction triggering ........................ 500
      Photochemical or photocatalytic systems ................. 500
      Electrochemical techniques .............................. 500
      Microwaves .............................................. 501
   Chemical reaction engineer in the twenty-first century ..... 501
   In Closing ................................................. 502

Subject Index ................................................. 503

Author Index .................................................. 515


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:27:04 2019. Размер: 49,883 bytes.
Посещение N 1694 c 18.11.2014