Current trends of surface science and catalysis (New York, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаCurrent trends of surface science and catalysis / ed. by J.Y.Park. - New York: Springer, 2014. - xii, 262 p.: il. - Bibliogr. at the end of the art. - Ind.: p.250-262. - ISBN 978-1-4614-8741-8
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Part I Introduction
1    Bridging Materials and Pressure Gaps in Surface Science 
     and Heterogeneous Catalysis ................................ 3
     Jeong Young Park and Gabor A. Somorjai
1.1  Introduction ............................................... 3
1.2  Materials and Pressure Gaps ................................ 4
1.3  Size, Shape, and Compositional Control of Colloid 
     Nanoparticles .............................................. 6
1.4  Control of Catalytic Reactions via Tuning the Size and 
     Composition of Bimetallic Nanoparticles .................... 8
1.5  In Situ Surface Characterization to Bridge Pressure Gaps .. 10
1.6  The Role of Metal-Oxide Interfaces in Heterogeneous
     Catalysis ................................................. 14
1.7  Conclusion ................................................ 16
References ..................................................... 16

Part II Model Systems for Nanocatalysts to Bridge Materials Gap
2    Shape-Controlled Nanoparticles: Effect of Shape on
     Catalytic Activity, Selectivity, and Long-Term Stability .. 21
     Hyunjoo Lee
2.1  Why Does Shape Matter for Catalytic Reactions? ............ 21
2.2  The Synthesis of Shaped Nanocrystals ...................... 23
     2.2.1  Colloidal Method ................................... 23
            2.2.1.1  Surface-Capping Agent ..................... 24
            2.2.1.2  Inorganic Shaping Agent ................... 25
            2.2.1.3  Reducing Agent ............................ 26
            2.2.1.4  Тор-Down Etching .......................... 26
     2.2.2  Electrochemical Method ............................. 27
2.3  The Effect of Shape on Catalytic Activity, Selectivity,
     and Long-Term Stability ................................... 27
     2.3.1  Pt3Ni Nanooctahedra ................................ 28
     2.3.2  Pt Nanodendrites ................................... 29
     2.3.3  Pt-Based Nanocubes ................................. 30
     2.3.4  Pt Overgrowth on Shaped Nanocrystals ............... 31
     2.3.5  Selectivity Enhanced by Shape ...................... 33
     2.3.6  Long-Term Stability Enhanced by Shape .............. 34
2.4  The Effect of the Surface-Capping Agent ................... 35
     2.4.1  How the Catalytic Activity Can Be Varied by the
            Surface-Capping Agents ............................. 35
     2.4.2  Removal of the Surface-Capping Agents .............. 36
     2.4.3  In Situ Shaping Without Surface-Capping Agents ..... 36
     2.4.4  Participating in Catalytic Reactions ............... 37
2.5  Issues to Be Resolved ..................................... 38
     2.5.1  Size: Facet vs. Edge/Step/Vertex ................... 38
     2.5.2  Stability .......................................... 39
     2.5.3  Mass Production .................................... 40
     References ................................................ 40

3    Non-colloidal Nanocatalysts Fabricated with
     Nanolithography and Arc Plasma Deposition ................. 45
     Sang Hoon Kim and Jeong Young Park
3.1  Introduction .............................................. 45
3.2  Nanocatalysts Fabricated with Lithography ................. 46
     3.2.1  Nanolithography for Fabrication of Nanodots and 
            Nanowires .......................................... 46
     3.2.2  Catalytic Properties of Nanowires Fabricated with 
            Lithography ........................................ 48
3.3  Nanocatalysts Fabricated Via Arc Plasma Deposition ........ 50
     3.3.1  Introduction to Arc Plasma Deposition .............. 50
     3.3.2  Nanocatalysts on Two-Dimensional Supports Using 
            APD ................................................ 53
     3.3.3  Nanocatalysts on Three-Dimensional Supports Using 
            APD ................................................ 55
     3.3.4  Some New Applications for Nanoparticles Prepared
            Via APD ............................................ 60
3.4  Summary and Outlook ....................................... 61
     References ................................................ 61

4    Dendrimer-Encapsulated Metal Nanoparticles: Synthesis 
     and Application in Catalysis .............................. 65
     Wenyu Huang
4.1  Introduction .............................................. 65
4.2  Synthesis of Dendrimer-Encapsulated Metal Nanoparticles ... 67
     4.2.1  Synthesis of Monometallic DENs by Chemical
            Reduction .......................................... 67
     4.2.2  Synthesis of DENs in Organic Solutions ............. 69
     4.2.3  Synthesis of DENs by Galvanic Redox Displacement ... 69
     4.2.4  Synthesis of Bimetallic DENs ....................... 69
4.3  Recent Advancement in Understanding the Structure of
     DENs ...................................................... 71
     4.3.1  Metal Binding Sites for Pt2+ Ions .................. 71
     4.3.2  Oxidation State of Pt DENs ......................... 72
     4.3.3  Glass Nature of the Cluster ........................ 76
4.4  Newly Developed Applications of DENs in Catalysis ......... 77
     4.4.1  Removal of Dendrimers for Heterogeneous Catalysis .. 77
     4.4.2  Understanding the Nanoparticle Size Effect in 
            Catalysis .......................................... 79
     4.4.3  Heterogenizing Homogeneous Catalysts and Their 
            Use in a Continuous Flow Reactor ................... 81
     4.4.4  Increasing Diastereoselectivity and 
            Chemoselectivity ................................... 85
4.5  Summary and Outlook ....................................... 86
     References ................................................ 87

5    Core-Shell Nanoarchitectures as Stable Nanocatalysts ...... 93
     Sang Hoon Joo, Jae Yeong Cheon, and Joon Yong Oh
5.1  Introduction .............................................. 93
5.2  Metal/Metal Oxide Core-Shell Nanocatalysts ................ 95
     5.2.1  Core-Shell Nanocatalysts with a Silica Shell ....... 95
     5.2.2  Non-Siliceous Oxide Shells ......................... 99
5.3  Metal/Metal Oxide Yolk-Shell Nanocatalysts ............... 103
5.4  Supported Catalysts Coated with Shell Layers ............. 110
5.5  Summary and Future Perspectives .......................... 113
     References ............................................... 115

6    Shape-Controlled Bimetallic Nanocatalysts in Fuel
     Cells: Synthesis and Electrocatalytic Studies ............ 121
     Yawen Zhang and Jun Gu
6.1  Introduction ............................................. 121
6.2  Classification of Bimetallic Nanocatalysts in Fuel 
     Cells .................................................... 122
6.3  Synthetic Routes to Bimetallic Nanocatalysts ............. 125
6.4  Key Factors to Control the Morphology of Bimetallic
     Nanocrystals ............................................. 127
     6.4.1  Reduction Rate of Metal Precursors ................ 127
     6.4.2  Facet-Specific Capping Agents ..................... 129
     6.4.3  Combination of Underpotential Deposition and the 
            Galvanic Replacement Reaction ..................... 133
6.5  Impact of Composition and Structure on Electrocatalytic
     Performance .............................................. 134
     6.5.1  Relationship Between Adsorption Strength and 
            Electrocatalytic Activity ......................... 134
     6.5.2  Mechanisms of Tuning Adsorption Energy ............ 135
6.6  Summary .................................................. 138
     References ............................................... 139

Part III In Situ Surface Characterization to Bridge Pressure 
Gaps
7    Role of Surface Oxides on Model Nanocatalysts in 
     Catalytic Activity of CO Oxidation ....................... 145
     Jeong Young Park, Kamran Qadir, and Sun Mi Kim
7.1  Introduction ............................................. 145
7.2  Pt Oxide ................................................. 146
7.3  Rh Oxide ................................................. 149
7.4  Ru Oxide ................................................. 153
     7.4.1  CO Oxidation on Ru: From Single Crystals Towards
            Nanoparticles ..................................... 153
     7.4.2  Ru Oxide Powder and Supported Ru Catalysts ........ 155
     7.4.3  Size Effect Under Catalytic Carbon Monoxide
            Oxidation for Ru Nanoparticles .................... 156
     7.4.4  Engineering Ru Oxide on Nanoparticles through
            UV-Ozone Surface Treatment ........................ 157
     7.4.5  Catalytic Activity of CO Oxidation on Ru 
            Nanoparticles and Ru Oxides Probed with Ambient 
            Pressure XPS ...................................... 159
7.5  Pd Oxide ................................................. 161
     7.5.1  Pd Oxide on Single Crystal Surfaces ............... 161
     7.5.2  CO Oxidation on Polycrystalline Palladium ......... 162
     7.5.3  Oxidation Process of Pd(111) Probed by AP-XPS ..... 162
     7.5.4  Pd Oxide on Nanoparticles ......................... 163
7.6  Concluding Remarks on the Role of Surface Oxide .......... 166
     References ............................................... 166

8    Influence of Atomic Structure, Steps, and Kinks on the
     Catalytic Activity: In Situ Surface Studies .............. 171
     Bas Hendriksen
8.1  Single-Crystal Studies of Heterogeneous Catalysis ........ 171
8.2  Concepts and Theory: The Importance of Atomic-Scale 
     Structure ................................................ 172
     8.2.1  Active Sites: Electronic and Geometric Effects .... 172
     8.2.2  The Importance of the Gas Phase ................... 175
8.3  Atomic Structure and the Active Phase .................... 177
     8.3.1  Structure-Sensitive Reactions ..................... 177
     8.3.2  Oxides as the Active Phase ........................ 177
            8.3.2.1  The Pressure-Gap Effect for Ruthenium .... 177
            8.3.2.2  The Role of Oxides in CO Oxidation ....... 180
8.4  Steps and Kinks .......................................... 183
     8.4.1  Step Decoration Experiments ....................... 184
     8.4.2  СО-Induced Step Formation from UHV to
            Atmospheric Pressure .............................. 185
     8.4.3  Steps and the Catalytically Active Oxide Phase .... 188
8.5  Summary .................................................. 191
     References ............................................... 191

9    The Development of Ambient Pressure X-Ray Photoelectron
     Spectroscopy and Its Application to Surface Science ...... 197
     Bongjin Simon Mun, Hiroshi Kondoh, Zhi Liu, Phil
     N. Ross Jr., and Zahid Hussain
9.1  The Brief History of Ambient Pressure X-Ray
     Photoelectron Spectroscopy ............................... 197
9.2  The First Development of Synchrotron-Based AP-XPS at 
     ALS ...................................................... 200
9.3  AP-XPS at ALS ............................................ 202
9.4  AP-XPS at Photon Factory ................................. 205
9.5  Oxidation Study of Transition Metal Single Crystals ...... 209
     9.5.1  CO Oxidation on Pt(110) ........................... 209
     9.5.2  NO Dissociation on Pt(111) ........................ 212
     9.5.3  CO Oxidation on Pd(111) ........................... 217
9.6  Application to Real System: Solid Oxide Fuel Cell ........ 221
9.7  Concluding Remarks: Futures on AP-XPS .................... 223
     References ............................................... 225

10   Electronic Excitation on Surfaces During Chemical and
     Photon Processes ......................................... 231
     Jeong Young Park
10.1 Introduction ............................................. 231
10.2 Theoretical Background of Energy Dissipation on
     Surfaces ................................................. 232
10.3 Detection of Hot Electrons ............................... 234
     10.3.1 Hot Electron Generation by Photons ................ 234
     10.3.2 Hot Electron Generation by Transfer of Energetic
            Molecules ......................................... 234
     10.3.3 Hot Electron Generation by Electron Beams ......... 235
10.4 Detection of Hot Electrons from Exothermic Catalytic
     Reactions ................................................ 237
     10.4.1 Concept of Catalytic Nanodiodes ................... 238
     10.4.2 Fabrication and Characterization of Metal-
            Semiconductor Nanodiodes .......................... 239
     10.4.1 Hot Electron Flows Detected on Catalytic
            Nanodiodes Under Exothermic Catalytic Reaction .... 241
10.6 Hot Electron Flows Detected Upon Photon Absorption ....... 244
10.7 Influence of Hot Electrons on Surface Chemistry .......... 246
     10.7.1 Influence of Hot Electrons on Atomic and
            Molecular Processes ............................... 247
     10.7.2 Hot Electron Effect on Metal-Oxide Hybrid
            Nanocatalysts ..................................... 248
10.8 Concluding Remarks and Future Perspective ................ 251
     References ............................................... 253

Index ......................................................... 259


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:27:04 2019. Размер: 17,275 bytes.
Посещение N 1140 c 18.11.2014