III-nitride semiconductors and their modern devices (Oxford, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаIII-nitride semiconductors and their modern devices / ed. by B.Gil. - Oxford: Oxford univ. press, 2013. - xxi, 638 p.: ill. - (Series on semiconductor science and technology; 18). - Incl. bibl. ref. - Ind.: p.619-638. - ISBN 978-0-19-968172-3
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
List of Contributors ........................................ xviii
1    Development of the nitride-based UV/DUV LEDs ............... 1
     Hiroshi Amano
1.1  Introduction ............................................... 1
1.2  Efficiency limiting process ................................ 4
     1.2.1  Internal quantum efficiency ......................... 4
     1.2.2  Current injection efficiency ....................... 10
     1.2.3  Light extraction efficiency ........................ 14
1.3  Summary ................................................... 14
     Acknowledgments ........................................... 14
     References ................................................ 15

2    The homoepitaxial challenge: GaN crystals grown at high
     pressure for laser diodes and laser diode arrays .......... 18
     Izabella Grzegory, Michal Bockowski, Piotr Perlin,
     Czeslaw Skierbiszewski, Tadeusz Suski, Marcin Sarzynski,
     Stanislaw Krukowski, and Sylwester Porowski
2.1  Introduction .............................................. 18
2.2  Thermodynamics of GaN ..................................... 20
     2.2.1  Melting conditions of GaN .......................... 20
     2.2.2  High-pressure thermodynamics of GaN: phase
            diagrams ........................................... 24
2.3  Crystal growth of GaN ..................................... 29
     2.3.1  GaN by HVPE ........................................ 30
     2.3.2  High-nitrogen-pressure solution growth of GaN ...... 32
     2.3.3  Ammonothermal growth of GaN ........................ 38
2.4  Epitaxy of nitrides on single-crystalline HNPS GaN:
     early results ............................................. 41
2.5  Development of nitrides epitaxy by PA MBE ................. 44
     2.5.1  Growth conditions for PAMBE ........................ 44
     2.5.2  The role of threading dislocations and miscut
            angle on surface morphology in low-temperature
            PAMBE .............................................. 46
     2.5.3  The growth of high-in-content InGaN layers by
            PAMBE .............................................. 47
     2.5.4  The influence of the growth conditions on the
            optical properties of InGaN QWs .................... 49
     2.5.5  Optical lasing from InGaN QWs ...................... 52
     2.5.6  Laser diodes ....................................... 54
2.6  "Plasmonic" GaN substrates and their use for lasers ....... 58
2.7  Laser diode arrays on laterally patterned substrates ...... 61
     2.7.1  Background ......................................... 61
     2.7.2  Laser diode arrays on laterally patterned HNPS
            GaN substrates ..................................... 64
2.8  High-power lasers and arrays on Ammono and HNPS GaN
     substrates ................................................ 67
2.9  Summary and conclusions ................................... 71
     Acknowledgments ........................................... 72
     References ................................................ 72

3    Epitaxial growth and benefits of GaN on silicon ........... 78
     Armin Dadgar and Alois Krost
3.1  Introduction .............................................. 78
3.2  The GaN-on-silicon challenges ............................. 78
     3.2.1  Lattice mismatch ................................... 79
     3.2.2  Thermal mismatch ................................... 81
     3.2.3  Meltback etching ................................... 82
     3.2.4  Plastic substrate deformation ...................... 83
     3.2.5  Vertical conductivity .............................. 85
3.3  Seed layer growth ......................................... 87
3.4  Stress management ......................................... 89
     3.4.1  Stress management by Al(Ga)N layers ................ 90
     3.4.2  Selective growth ................................... 95
3.5  Dislocation reduction ..................................... 95
3.6  Light-emitting diodes ..................................... 98
3.7  Electronics .............................................. 102
     3.7.1  RF transistors .................................... 103
     3.7.2  HV transistors .................................... 103
3.8  Limits of GaN-on-Si MOVPE technology and new
     developments ............................................. 106
     3.8.1  Limits of GaN-on-Si MOVPE technology .............. 107
     3.8.2  New developments .................................. 107
     Acknowledgments .......................................... 112
     References ............................................... 112

4    The growth of bulk aluminum nitride ...................... 121
     Ronny Kirste and Zlatko Sitar
4.1  Introduction ............................................. 121
4.2  Bulk AlN: a pathway to high-quality AlGaN ................ 121
4.3  Growth of AlN crystals ................................... 123
     4.3.1  Physical vapor transport .......................... 124
     4.3.2  Hydrid vapor phase epitaxy ........................ 126
     4.3.3  Solution growth ................................... 128
     4.3.4  Seeding of AlN crystal growth ..................... 129
4.4  Properties of state-of-the-art bulk A1N .................. 130
     4.4.1  Structural properties ............................. 131
     4.4.2  Optical properties and impurities ................. 133
4.5  Applications and devices ................................. 137
     4.5.1  Properties of AlN and AlGaN epitaxial layers on
            AlN ............................................... 137
     4.5.2  Devices on bulk AlN substrates .................... 139
     4.6  Outlook ............................................. 141
     References ............................................... 142

5    Epitaxial growth of nitride quantum dots ................. 147
     André Strittmatter
5.1  Introduction ............................................. 147
5.2  GaN quantum dots ......................................... 148
     5.2.1  Molecular beam epitaxy ............................ 148
     5.2.2  Metalorganic vapor phase epitaxy .................. 151
     5.2.3  Growth on non-polar and semipolar planes .......... 152
5.3  InxGa1-xN quantum dots .................................. 157
     5.3.1  Phase separation and In segregation effects ....... 157
     5.3.2  Stranski-Krastanow growth mode .................... 159
     5.3.3  Spontaneous quantum dot formation in InGaN
            layers ............................................ 162
     5.3.4  Thermal annealing and surface pre-treatment
            methods ........................................... 164
     5.3.5  InN quantum dots .................................. 165
5.4  Site-selective growth .................................... 167
5.5  Summary .................................................. 169
     References ............................................... 170

6    Properties of InAlN layers nearly lattice-matched to
     GaN and their use for photonics and electronics .......... 177
     Raphaël Butté, Gatien Cosendey, Lorenzo Lugani, Marlene
     Glauser, Antonino Castiglia, Guillaume Perillat-
     Merceroz, Jean-François Carlin, and Nicolas Grandjean
6.1  Introduction ............................................. 177
6.2  Growth and structural properties of bulk InAIN layers .... 178
     6.2.1  Growth characteristics of InAIN films ............. 178
     6.2.2  Structural properties of bulk InAIN layers ........ 181
6.3  Optical and electronic properties of bulk InAIN layers ... 188
6.4  Optical features of GaN/InAlN quantum wells .............. 191
6.5  Nearly lattice-matched InAIN/(Al) GaN distributed
     Bragg reflectors ......................................... 192
     6.5.1  Growth properties ................................. 192
     6.5.2  Optical properties ................................ 195
     6.5.3  Applications ...................................... 196
6.6  InAIN cladding layers for edge-emitting lasers ........... 200
6.7  InAlN/GaN high electron mobility transistors ............. 207
     6.7.1  Growth of InAlN/GaN high electron mobility
            heterostructures .................................. 208
     6.7.2  InAlN/GaN HEMTs for high-frequency applications ... 210
     6.7.3  Power performance of InAlN/GaN HEMTs .............. 212
     6.7.4  Enhancement-mode InAlN/GaN HEMTs .................. 214
6.8  Conclusion ............................................... 216
     Acknowledgments .......................................... 217
     References ............................................... 217

7    Growth and optical properties of aluminum-rich AlGaN
     heterostructures ......................................... 227
     Hideto Miyake
7.1  Introduction ............................................. 227
7.2  Growth of Si-doped AlGaN on AIN/sapphire templates ....... 228
7.3  Growth of Si-doped AlGaN/AlGaN multiple-quantum wells .... 232
7.4  Fabrication of AlGaN MQWs for electron-beam target
     for deep-ultraviolet light sources ....................... 240
7.5  Conclusions .............................................. 241
     Acknowledgments .......................................... 242
     References ............................................... 242

8    Optical and structural properties of InGaN light-
     emitters on non-polar and semipolar GaN .................. 244
     Michael Kneissl and Tim Wernicke
8.1  Spontaneous and piezoelectric polarization in InGaN/GaN
     quantum wells on c-plane, semipolar,
     and non-polar crystal orientations ....................... 245
8.2  Performance characteristics of violet, blue, and green
     (0001) c-plane InGaN quantum well LEDs and laser
     diodes ................................................... 248
8.3  Growth of non-polar and semipolar GaN buffer layers
     for device applications .................................. 253
     8.3.1  Growth of GaN on low-defect bulk GaN substrates ... 253
     8.3.2  Growth of GaN on planar heteroepitaxial
            substrates ........................................ 255
     8.3.3  Strategies for defect reduction for
            heteroepitaxially grown GaN ....................... 257
8.4  Growth of InGaN layers and quantum wells on m-plane and
     different semipolar surfaces, i.e. (1012), (1011),
     (2021), (1122) ........................................... 261
     8.4.1  Indium incorporation efficiency for different
            surface orientations .............................. 261
     8.4.2  Optical properties of non-polar and semipolar
            InGaN QWs ......................................... 263
8.5  Performance characteristics of non-polar and semipolar
     InGaN QW LEDs ............................................ 266
     8.5.1  External quantum efficiencies and emission
            wavelength ........................................ 266
     8.5.2  Polarization effects and efficiency droop ......... 268
8.6  Performance characteristics of non-polar and semipolar
     InGaN QW lasers .......................................... 269
     8.6.1  Gain characteristics of InGaN quantum-well
            lasers on non-polar and semipolar GaN and
            effects of the excitation stripe orientation ...... 269
     8.6.2  Fabrication of laser cavities (e.g., etched,
            cleaved facets) ................................... 272
     8.6.3  State-of-the-art of non-polar and semipolar
            InGaN laser diodes ................................ 276
8.7  Summary and outlook ...................................... 279
     Acknowledgments .......................................... 279
     References ............................................... 279

9    GaN-based single-nanowire devices ........................ 289
     Rudeesun Songmuang and Eva Monroy
9.1  Introduction ............................................. 289
9.2  Nanowire synthesis ....................................... 290
     9.2.1  Catalyst-induced NW growth ........................ 290
     9.2.2  Catalyst-free NW growth ........................... 293
9.3  Energy conversion ........................................ 299
     9.3.1  Photoconductive detection ......................... 299
     9.3.2  Photovoltaics ..................................... 305
     9.3.3  Energy harvesting via piezoelectric effects ....... 306
9.4  Nanoelectronics .......................................... 308
     9.4.1  GaN NW field-effect transistors ................... 308
     9.4.2  GaN NW single-electron transistors ................ 310
     9.4.3  GaN/AlN/AlGaN core-shell NW high-electron-
            mobility transistors .............................. 312
     9.4.4  GaN/AlN axial-heterostructure resonant tunneling
            devices ........................................... 313
     9.4.5  GaN/AlN axial-heterostructure single-electron
            transistors ....................................... 315
9.5  Sensorics ................................................ 317
9.6  Conclusions .............................................. 321
     Acknowledgments .......................................... 321
     References ............................................... 321

10   Advanced photonic and nanophotonic devices ............... 330
     Jean-Yves Duboz
10.1 Planar microcavities ..................................... 330
     10.1.1 Linear regime: basics ............................. 330
     10.1.2 Linear regime: results ............................ 332
     10.1.3 Non-linear regime: basics ......................... 334
     10.1.4 Non-linear regime: results ........................ 338
10.2 Photonic crystal ......................................... 342
10.3 Microdisks ............................................... 349
10.4 Nanowires ................................................ 354
10.5 Conclusion ............................................... 357
     References ............................................... 358

11   Nitride-based electron devices for high-power/high-
     frequency applications ................................... 366
     Yvon Cordier, Tatsuya Fujishima, Bin Lu, Elison
     Matioli, and Tomás Palacios
11.1 Relevant GaN properties for electron devices ............. 366
11.2 GaN two-terminal devices ................................. 369
     11.2.1 High-breakdown Schottky diodes .................... 369
     11.2.2 Bipolar GaN diodes (p-n or p-i-n) ................. 372
     11.2.3 Gunn diodes ....................................... 373
     11.2.4 Tunnel diodes ..................................... 376
11.3 Bipolar junction transistors and heterojunction bipolar
     transistors (BJT and HBT) ................................ 380
11.4 Field-effect transistors ................................. 383
     11.4.1 High-frequency GaN-based HEMTs for RF and mixed-
            signal applications ............................... 384
     11.4.2 Lateral GaN high-voltage power transistors ........ 392
     11.4.3 Vertical GaN power transistors .................... 400
11.5 Conclusion ............................................... 406
     References ............................................... 406

12   Intersubband transitions in low-dimensional nitrides ..... 414
     Maria Tchernycheva and François H. Julien
12.1 Introduction ............................................. 414
12.2 Intersubband transitions in nitride heterostructures:
     theoretical aspects ...................................... 415
     12.2.1 Effective-mass approximation ...................... 416
     12.2.2 Band non-parabolicity ............................. 417
     12.2.1 Hartree approximation ............................. 417
     12.2.4 Internal electric field ........................... 418
     12.2.5 Band bending ...................................... 420
     12.2.6 Many-body effects ................................. 421
     12.2.7 Optical properties of intersubband transitions .... 424
12.3 Intersubband spectroscopy of nitride quantum wells
     and quantum dots ......................................... 426
     12.3.1 Near-infrared intersubband absorption in polar
            GaN/AlN quantum wells ............................. 426
     12.3.2 Intersubband transitions in In-containing
            heterostructures .................................. 428
     12.3.3 Coupled GaN/AlN quantum wells ..................... 429
     12.3.4 Mid-infrared intersubband absorption in AlGaN/
            GaN quantum wells ................................. 430
     12.3.5 Tuning ISB transitions to the terahertz
            frequency domain in polar GaN/AlGaN quantum
            wells ............................................. 432
     12.3.6 Intersubband transitions in semipolar GaN/AlN
            quantum wells ..................................... 434
     12.3.7 Intersubband transitions in cubic GaN/Al(Ga)N
            quantum wells ..................................... 435
     12.3.8 Intersublevel absorption in GaN/AIN quantum dots .. 436
12.4 GaN-based intersubband light modulators .................. 438
     12.4.1 All-optical switches .............................. 438
     12.4.2 Electro-optical modulators ........................ 440
12.5 GaN-based intersubband photodetectors .................... 445
     12.5.1 Quantum well infrared photodetectors .............. 445
     12.5.2 Quantum dot infrared photodetectors ............... 446
     12.5.3 Quantum cascade photodetectors .................... 447
12.6 GaN-based intersubband light emitters .................... 454
     12.6.1 ISB light generation in GaN-based QWs through
            non-linear optical processes ...................... 454
     12.6.2 Intraband emission of GaN-based quantum dots
            via a resonant Raman process ...................... 455
     12.6.3 Intersubband luminescent devices .................. 456
     12.6.4 Towards THz quantum cascade lasers ................ 457
12.7 Conclusions .............................................. 460
     References ............................................... 460

13   The slow light in gallium nitride ........................ 476
     Tatiana V. Shubina, Mikhail M. Glazov, Nikolay
     A. Gippius, and Bernard Gil
13.1 Introduction ............................................. 476
13.2 Slow light: history and recent studies ................... 477
     13.2.1 Group velocity in a medium with optical
            dispersion ........................................ 477
     13.2.2 Light propagation in semiconductors near
            excitonic lines ................................... 479
     13.2.3 Electromagnetically induced transparency and
            other effects ..................................... 481
     13.2.4 Light scattering and diffusion .................... 483
13.3 Two mechanisms of light transfer in GaN: ballistic
     and diffusive ............................................ 484
     13.3.1 Optical dispersion in a medium with several
            resonances of free and bound excitons ............. 484
     13.3.2 Diffusive propagation of light and resonant
            photon scattering by bound excitons ............... 487
13.4 Time-of-flight spectroscopy of light propagating
     through GaN crystals ..................................... 488
13.5 Excitonic parameters of wide-gap semiconductors .......... 493
13.6 Distortion of optical pulse near excitonic resonances .... 497
13.7 Concluding remarks ....................................... 500
     References ............................................... 500

14   Nitride devices and their biofunctionalization for
     biosensing applications .................................. 505
     Csilla Gergely
14.1 Introduction ............................................. 505
14.2 Configurations of nitride devices for sensing ............ 506
14.3 Functionalization of nitrides ............................ 508
14.4 Sensing examples with nitride-based devices .............. 511
     References ............................................... 516

15   Heterovalent ternary II-IV-N2 compounds: perspectives
     for a new class of wide-band-gap nitrides ................ 519
     Walter R.L. Lambrecht and Atchara Punya
15.1 Introduction ............................................. 519
15.2 History and crystal growth ............................... 522
15.3 Crystal structure and symmetry ........................... 525
     15.3.1 Symmetry .......................................... 525
     15.3.2 Lattice constants ................................. 527
15.4 Thermodynamic stability .................................. 527
15.5 Electronic structure ..................................... 533
     15.5.1 Computational methods ............................. 534
     15.5.2 Band-structure overview ........................... 537
     15.5.3 Effective-mass Hamiltonians ....................... 546
15.6 Lattice dynamics ......................................... 550
     15.6.1 Computational method .............................. 550
     15.6.2 Vibrational modes at the zone center .............. 554
     15.6.3 Phonon dispersions and density of states .......... 558
     15.6.4 Infrared spectroscopy ............................. 558
     15.6.5 Raman spectroscopy ................................ 561
15.7 Elastic and piezoelectric tensors ........................ 565
     15.7.1 Theoretical considerations ........................ 565
     15.7.2 Values for nitrides ............................... 567
15.8 Spontaneous polarization ................................. 570
15.9 Optical properties ....................................... 571
     15.9.1 Indices of refraction ............................. 571
     15.9.2 UV dielectric functions ........................... 572
     15.9.3 Non-linear optics ................................. 573
15.10 Defects ................................................. 575
15.11 Outlook ................................................. 577
     Acknowledgments .......................................... 578
     References ............................................... 578

16   Terahertz emission in polaritonic systems with nitrides .. 586
     Oleksandr Kyriienko, Ivan A. Shelykh, and Alexey
     V. Kavokin
16.1 Introduction ............................................. 586
     16.1.1 Excitons .......................................... 587
     16.1.2 Exciton-polaritons ................................ 590
16.2 Polariton-based terahertz emitters ....................... 594
     16.2.1 Upper-to-lower polariton transition ............... 594
     16.2.2 THz emission by 2p-exciton to 1s-polariton
            transition ........................................ 604
     16.2.3 Dipolariton THz emission .......................... 611
16.3 Conclusion ............................................... 616
     Acknowledgments .......................................... 617
     References ............................................... 617

Index ......................................................... 619


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:27:04 2019. Размер: 27,544 bytes.
Посещение N 1716 c 28.10.2014