Roy S. Computational modeling of polymer composites: a study of creep and environmental effects (Boca Raton, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRoy S. Computational modeling of polymer composites: a study of creep and environmental effects / S.Roy, J.N.Reddy. - Boca Raton: CRC/Taylor & Francis, 2014. - xvi, 282 p., [1] l. col. ill.: ill. - (Computational mechanics and applied analysis). - Bibliogr. at the end of the chapters. - Ind.: p.275-282. - ISBN 978-1-4665-8649-9
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ xv

1    General Introduction and Equations of Solid Mechanics ...... 1
1.1  Introduction ............................................... 1
1.2  Vectors and Tensors ........................................ 2
     1.2.1  Definitions ......................................... 2
     1.2.2  Components of Vectors and Tensors ................... 2
     1.2.3  Summation Convention ................................ 4
     1.2.4  The Del Operator .................................... 5
     1.2.5  Transformations of Components ....................... 6
1.3  Equations of Solid Mechanics ............................... 9
     1.3.1  Introduction ........................................ 9
     1.3.2  Kinematics ......................................... 10
     1.3.3  Compatibility Equations ............................ 13
     1.3.4  Stress Vector and Stress Tensor .................... 14
     1.3.5  Equations of Motion ................................ 16
     1.3.6  Constitutive Relations: Hooke's Law ................ 17
     1.3.7  Linear Viscoelasticity ............................. 21
1.4  Energy Principles of Solid Mechanics ...................... 25
     1.4.1  Introduction and Concept of Work Done .............. 25
     1.4.2  The Principle of Virtual Displacements ............. 26
     1.4.3  The Principle of Minimum Total Potential Energy .... 29
1.5  Summary ................................................... 31
     References ................................................ 31

2    A Review of the Finite Element Method ..................... 33
2.1  Introduction .............................................. 33
2.2  Linear Plane Elasticity Problems .......................... 34
2.1  Governing Equations ....................................... 34
     2.2.2  Finite Element Approximation ....................... 36
     2.2.3  Virtual Work Statement ............................. 37
     2.2.4  Finite Element Model ............................... 38
2.3  Finite Element Models of Nonlinear Continua ............... 40
     2.3.1  Introduction ....................................... 40
     2.3.2  Strain and Stress Measures ......................... 41
     2.3.3  Principle of Virtual Displacements ................. 43
     2.3.4  Total Lagrangian Formulation ....................... 44
     2.3.5  Updated Lagrangian Formulation ..................... 45
     2.3.6  2-D Finite Element Models .......................... 46
            2.3.6.1  Total Lagrangian formulation .............. 46
            2.3.6.2  Updated Lagrangian formulation ............ 47
2.4  Numerical Integration ..................................... 48
     2.4.1  Preliminary Comments ............................... 48
     2.4.2  Coordinate Transformations ......................... 48
     2.4.3  Integration over a Master Rectangular Element ...... 52
     2.4.4  Integration over a Master Triangular Element ....... 53
     2.4.5  Numerical Integration over Three-Dimensional
            Elements ........................................... 55
2.5  Two-Dimensional Finite Elements ........................... 56
     2.5.1  Properties of Approximation Functions .............. 56
     2.5.2  Linear Triangular Element .......................... 56
     2.5.3  Linear Rectangular Element ......................... 58
2.6  Three-Dimensional Finite Elements ......................... 61
     2.6.1  Hexahedral (Brick) Elements ........................ 61
     2.6.2  Tetrahedral Elements ............................... 61
     2.6.3  Prism Elements ..................................... 63
2.7  Summary ................................................... 65
     References ................................................ 65

3    Finite Element Models of Linear Viscoelastic Materials .... 67
3.1  Introduction .............................................. 67
3.2  Linear Viscoelastic Formulation ........................... 67
     3.2.1  Introduction ....................................... 67
     3.2.2  Uniaxial Stress State .............................. 69
     3.2.3  Multiaxial Stress State ............................ 71
     3.2.4  Three-Dimensional Viscoelastic Constitutive
            Relations .......................................... 76
3.3  Finite Element Analysis ................................... 79
     3.3.1  Finite Element Model ............................... 79
     3.3.2  Example Problems ................................... 80
            3.3.2.1  Creep and recovery of axisymmetric
                     viscoelastic rod .......................... 80
            3.3.2.2  Response of an axisymmetric viscoelastic
                     rod to cyclic load ........................ 83
            3.3.2.3  Response of a three-dimensional
                     viscoleastic rod to cyclic load ........... 85
            3.3.2.4  Delayed failure in a linear viscoelastic
                     material .................................. 85
3.4  Summary ................................................... 93
     References ................................................ 93

4    Finite Element Analysis of Diffusion in Polymer and
     Polymer Matrix Composites ................................. 95
4.1  Introduction .............................................. 95
     4.1.1  Preliminary Comments ............................... 95
     4.1.2  Diffusion in a Polymer ............................. 97
4.2  Modeling of Moisture Diffusion ............................ 99
     4.2.1  Governing Equations ................................ 99
     4.2.2  Finite Element Formulation ........................ 100
     4.2.3  Solution of Nonlinear Equations ................... 102
            4.2.3.1  Direct iteration scheme .................. 102
            4.2.3.2  Newton's iteration scheme ................ 103
     4.2.4  Axisymmetric Diffusion Problems ................... 103
            4.2.4.1  Preliminary comments ..................... 103
            4.2.4.2  Finite element model ..................... 104
     4.2.5 Numerical Examples ................................. 105
            4.2.5.1  One-dimensional linear Fickian
                     diffusion in a polymer film .............. 105
            4.2.5.2  Two-dimensional Fickian diffusion in an
                     orthotropic material ..................... 107
            4.2.5.3  Hygrothermal stresses in two-
                     dimensional Fickian diffusion in an
                     orthotropic material ..................... 111
4.3  Diffusion with Time-Varying Diffusivity .................. 113
     4.3.1  Introduction ...................................... 113
     4.3.2  Governing Equations ............................... 113
     4.3.3  Analytical Solution ............................... 114
     4.3.4  Variational (Weak) Form ........................... 116
     4.3.5  Finite Element Model .............................. 116
     4.3.6  A Numerical Example ............................... 117
4.4  Summary .................................................. 119
     References ............................................... 119

5    Finite Element Models of Nonlinear Viscoelastic
     Materials ................................................ 123
5.1  Introduction ............................................. 123
5.2  Uniaxial Stress State .................................... 124
5.3  Multiaxial Stress State .................................. 127
5.4  Constitutive Relations for Three-Dimensional
     Viscoelasticity .......................................... 133
5.5  Finite Element Model ..................................... 136
5.6  Example Problems of Nonlinear Viscoelasticity ............ 137
     5.6.1  Analysis of Adhesive Coupons ...................... 137
     5.6.2  Isothermal Creep and Recovery in an Epoxy
            Adhesive .......................................... 140
     5.6.3  Analysis of a Model Joint ......................... 144
     5.6.4  Analysis of a Composite Single Lap Joint .......... 150
     5.6.5  Nonlinear Isochronous Creep in an Axisymmetric
            Rod ............................................... 153
5.7  Delayed Failure .......................................... 156
     5.7.1  Uniaxial Formulation .............................. 156
     5.7.2  Multiaxial Formulation ............................ 157
     5.7.3  Example: A Butt Joint ............................. 159
5.8  Summary .................................................. 162
     References ............................................... 162

6    Finite Element Analysis of Nonlinear Diffusion in
     Polymers ................................................. 167
6.1  Introduction to Nonlinear Fickian Diffusion .............. 167
6.2  Background on Nonlinear Diffusion Analysis ............... 168
6.3  Newton-Raphson Technique for Solving Nonlinear
     Diffusion Problem ........................................ 169
6.4  Iterative Solution Procedure ............................. 170
6.5  Examples of Nonlinear Diffusion Problems ................. 171
     6.5.1  Diffusion in a Semi-Infinite Media ................ 171
     6.5.2  Gas Transport in Uniaxially Stretched
            Polystyrene ....................................... 173
     6.5.3  Analysis of a Butt Joint Including Moisture
            Diffusion ......................................... 176
6.6  Summary .................................................. 186
     References ............................................... 186

7    Non-Fickian Solvent Diffusion in a Solid with Large
     Dilatation ............................................... 189
7.1  Introduction ............................................. 189
7.2  Governing Equations ...................................... 190
7.3  Swelling (Dilatation) due to Solvent Ingress in an
     Orthotropic Solid ........................................ 191
     7.3.1  Governing Equations ............................... 191
     7.3.2  Finite Element Formulation ........................ 193
     7.3.3  Time-Integration using θ-Family of Approximation .. 195
     7.3.4  The Newton Iteration Scheme ....................... 195
     7.3.5  Numerical Example: Diffusion in a One-
            Dimensional Bar with Large Dilatation ............. 196
     7.3.6  Effective Diffusivity and Diffusivity Correction
            Factor ............................................ 200
     7.3.7  Calculation of Shear Stresses ..................... 202
7.4  Summary .................................................. 204
     References ............................................... 204

8    A Coupled Hygrothermal Cohesive Layer Model for
     Simulating Debond Growth in Bimaterial Interfaces ........ 205
8.1  Preliminary Comments ..................................... 205
8.2  Introduction ............................................. 205
8.3  Cohesive Layer Model Development ......................... 207
8.4  Derivation of Consistent Diffusivities ................... 212
8.5  Cohesive Layer Diffusion Boundary Conditions ............. 212
8.6  Cohesive Work of Separation .............................. 213
8.7  Numerical Implementation ................................. 214
8.8  Finite Element Model Verification ........................ 215
     8.8.1  Comparison with Analytical Solution for a DCB
            Specimen .......................................... 215
     8.8.2  Modification of DCB Solution (Modified Williams'
            Model) ............................................ 219
8.9  Comparison Between Analytical Solution and Finite
     Element Results .......................................... 222
8.10 Simulation of Debond Growth due to Bond Degradation:
     Wedge Test Simulation .................................... 228
8.11 Summary .................................................. 234
     References ............................................... 234

9    A Viscoelastic Cohesive Layer Model for Prediction of
     Interlaminar Shear Strength of Carbon/Epoxy Composites ... 237
9.1  Introduction ............................................. 237
9.2  Background ............................................... 238
9.3  Finite Element Modeling .................................. 238
9.4  A Multi-Scale Viscoelastic Cohesive Layer Formulation
     Including Damage Evolution ............................... 239
     9.4.1  Governing Equations ............................... 239
     9.4.2  Damage Evolution Law .............................. 241
     9.4.3  Determination of Principal Stretch ................ 242
     9.4.4  Damage Initiation Criterion ....................... 243
9.5  Hydrolysis of Epoxy Resins in a Polymer Composite ........ 244
     9.5.1  Introduction ...................................... 244
     9.5.2  Mechanism-Based Modeling of Degradation Due to
            Hygrothermal Aging in Polymer Composites .......... 244
     9.5.3  Calculation of Moisture Degradation Parameter r ... 245
     9.5.4  Derivation of Internal State Variable for
            Moisture Induced Degradation ...................... 245
     9.5.5  Modeling of Strength Degradation due to
            Hygrothermal Effects .............................. 247
     9.5.6  Delamination Failure at the Interface between
            Adjacent Lamina in a Unidirectional Carbon/Epoxy
            Laminate .......................................... 248
9.6  Results and Discussion ................................... 248
     9.6.1  Finite Element Simulation of Short Beam Shear
            Experiments ....................................... 248
     9.6.2  A Sensitivity Study of the Effect of
            Displacement Rate on Cohesive Law ................. 250
     9.6.3  Verification of Model Prediction with Test Data
            for Interlaminar Shear Strength ................... 252
9.7  Summary .................................................. 254
     References ............................................... 255

10   A Multi-Scale Viscoelastic Cohesive Layer Model for
     Predicting Delamination in High Temperature Polymer
     Composites ............................................... 257
10.1 Introduction ............................................. 257
10.2 Double Cantilever Beam (DCB) Experiment .................. 260
10.1 Specimen Preparation and DCB Specimen Geometry ........... 260
     10.2.2 Experimental Method ............................... 261
10.3 Viscoelastic Cohesive Layer Model ........................ 261
     10.3.1 Preliminary Comments .............................. 261
     10.3.2 Damage Evolution Law for the Micromechanical RVE .. 262
10.4 Extraction of Cohesive Law from Experimental Data
     Through J-Integral ....................................... 263
10.5 Evaluation of Damage Evolution Law ....................... 265
10.6 Numerical Results ........................................ 268
10.7 Summary .................................................. 271
     References ............................................... 272

Index ......................................................... 275


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:27:02 2019. Размер: 19,281 bytes.
Посещение N 1246 c 11.11.2014