Valiev U.Z. Bulk nanostructured materials: fundamentals and applications (Hoboken, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаValiev U.Z. Bulk nanostructured materials: fundamentals and applications / R.Z.Valiev, A.P.Zhilyaev, T.G.Langdon. - Hoboken: Wiley/TMS, 2014. - xvi, 440 p.: ill. - Incl. bibl. ref. - Ind.: p.436-440. - ISBN 978-1-118-09540-9
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
PREFACE ...................................................... xiii
ACKNOWLEDGMENTS ................................................ xv

1  Introduction ................................................. 1
2  Description of Severe Plastic Deformation (SPD):
   Principles and Techniques .................................... 6
   2.1  A Historical Retrospective of SPD Processing ............ 6
   2.2  Main Techniques for Severe Plastic Deformation .......... 8
   2.3  SPD Processing Regimes for Grain Refinement ............ 15
   2.4  Types of Nanostructures from SPD ....................... 16

PART ONE  HIGH-PRESSURE TORSION ................................ 23
3  Principles and Technical Parameters of High-Pressure
   Torsion ..................................................... 25
   3.1  A History of High-Pressure Deformation ................. 25
   3.2  Definition of the Strain Imposed in HPT ................ 28
   3.3  Principles of Unconstrained and Constrained HPT ........ 32
   3.4  Variation in Homogeneity Across an HPT Disk ............ 33
        3.4.1  Developing a Pictorial Representation of the
               Microhardness Distributions ..................... 33
        3.4.2  Macroscopic Row Pattern During HPT .............. 38
        3.4.3  Occurrence of Nonhomogeneity in the
               Microstructures Produced by HPT ................. 52
   3.5  Influence of Applied Load and Accumulated Strain on
        Microstructural Evolution .............................. 67
   3.6  Influence of Strain Hardening and Dynamic Recovery ..... 71
   3.7  Significance of Slippage During High-Pressure
        Torsioning ............................................. 76
   3.8  Models for the Development of Homogeneity in HPT ....... 81
4  HPT Processing of Metals, Alloys, and Composites ............ 88
   4.1  Microstructure Evolution and Grain Refinement in
        Metals Subjected to HPT ................................ 88
        4.1.1  Microstructure and Grain Refinement in fee and
               bec Pure Metals ................................. 88
        4.1.2  Allotropic Transformation in HCP Metals as
               Mechanism of Grain Refinement ................... 97
        4.1.3  Significance of the Minimum Grain Size
               Attained Using HPT ............................. 103
        4.1.4  Microtexture and Grain Boundary Statistics in
               HPT Metals ..................................... 107
   4.2  Processing of Solid Solutions and Multiphase Alloys ... 112
        4.2.1  High-Pressure Torsion of Solid Solutions ....... 112
        4.2.2  Grain Refinement During Processing of
               Multiphase Alloys .............................. 119
        4.2.3  Amorphization and Nanocrystallization of
               Alloys by HPT .................................. 126
   4.3  Processing of Intermetallics by HPT ................... 130
   4.4  Processing of Metal Matrix Composites ................. 136
5  New Approaches to HPT Processing ........................... 152
   5.1  Cyclic Processing by Reversing the Direction of
        Torsional Straining ................................... 152
   5.2  Using HPT for the Cold Consolidation of Powders and
        Machining Chips ....................................... 173
   5.3  Extension of HPT to Large Samples ..................... 180

PART TWO  EQUAL CHANNEL ANGULAR PRESSING
6  Development of Processing Using Equal-Channel Angular
   Pressing ................................................... 193
   6.1  Construction of an ECAP/ECAE Facility ................. 193
   6.2  Equal-Channel Angular Pressing of Rods, Bars, and
        Plate Samples ......................................... 195
   6.3  Alternative Procedures for Achieving ECAP: Rotary
        Dies, Side-Extrusion, and Multipass Dies .............. 198
   6.4  Developing ECAP with Parallel Channels ................ 201
   6.5  Continuous Processing by ECAP: From Continuous
        Confined Shearing, Equal-Channel Angular Drawing and
        Conshearing, to Conform Process ....................... 204
7  Fundamental Parameters and Experimental Factors in ECAP .... 215
   7.1  Strain Imposed in ECAP ................................ 215
   7.2  Processing Routes in ECAP ............................. 219
   7.3  Shearing Patterns Associated with ECAP ................ 221
   7.4  Experimental Factors Influencing ECAP ................. 223
        7.4.1  Influence of the Channel Angle and the Angle
               of Curvature ................................... 223
        7.4.2  Influence of the Pressing Speed and
               Temperature .................................... 229
   7.5  Role of Internal Heating During ECAP .................. 232
   7.6  Influence of a Back Pressure .......................... 234
8  Grain Refinement in Metallic Systems Processed by ECAP ..... 239
   8.1  Mesoscopic Characteristics After ECAP ................. 240
   8.2  Development of an Ultrafine-Grained Microstructure .... 244
   8.3  Factors Governing the Ultrafine Grain Size in ECAP .... 253
   8.4  Microstructural Features and Texture After ECAP ....... 256
   8.5  Influence of ECAP on Precipitation .................... 262
   8.6  Pressing of Multiphase Alloys and Composites .......... 266
        8.6.1  Multiphase Alloys .............................. 267
        8.6.2  Metal Matrix Composites ........................ 270
   8.7  Consolidation by ECAP ................................. 275
   8.8  Post-ECAP Processing .................................. 277

PART THREE  FUNDAMENTALS AND PROPERTIES OF MATERIALS AFTER
SPD ........................................................... 289
9  Structural Modeling and Physical Properties of
   SPD-Processed Materials .................................... 291
   9.1  Experimental Studies of Grain Boundaries in BNM ....... 293
   9.2  Developments of Structural Model of BNM ............... 309
   9.3  Fundamental Parameters and Physical Properties ........ 312
        9.3.1  Curie Temperature and Magnetic Properties ...... 313
        9.3.2  Debye Temperature and Diffusivity .............. 315
        9.3.3  Electroconductivity ............................ 320
        9.3.4  Elastic Properties and Internal Friction ....... 323
10 Mechanical Properties of BNM at Ambient Temperature ........ 331
   10.1 Strength and "Superstrength" .......................... 332
   10.2 Plastic Deformation and Ductility ..................... 338
   10.3 Fatigue Behavior ...................................... 345
   10.4 Alternative Deformation Mechanisms at Very Small
        Grain Sizes ........................................... 350
11 Mechanical Properties at High Temperatures ................. 357
   11.1 Achieving Superplasticity in Ultrafine-Grained
        Metals ................................................ 359
        11.1.1 Superplasticity after Processing by HPT ........ 360
        11.1.2 Superplasticity after Processing by ECAP ....... 364
   11.2 Effects of Different ECAP Processing Routes on
        Superplasticity ....................................... 370
   11.3 Developing a Superplastic Forming Capability .......... 375
   11.4 Cavitation in Superplasticity After SPD ............... 378
   11.5 Future Prospects for Superplasticity in
        Nanostractured Materials .............................. 380
12 Functional and Multifunctional Properties of Bulk
   Nanostructured Materials ................................... 387
   12.1 Corrosion Behavior .................................... 388
   12.2 Wear Resistance ....................................... 390
   12.3 Enhanced Strength and Conductivity .................... 393
   12.4 Biomedical Behavior of Nanometals ..................... 396
   12.5 Enhanced Magnetic Properties .......................... 398
   12.6 Inelasticity and Shape-Memory Effects ................. 402
   12.7 Other Functional Properties ........................... 405
        12.7.1 Enhanced Reaction Kinetics ..................... 405
        12.7.2 Radiation Resistance ........................... 407
        12.7.3 Thermoelectric Property ........................ 408
        12.7.1 PART FOUR INNOVATION POTENTIAL AND PROSPECTS
               FOR SPD APPLICATIONS ........................... 415
13 Innovation Potential of Bulk Nanostructured Materials ...... 417
   13.1 Nanotitanium and Ti Alloys for Medical Implants ....... 417
   13.2 Nanostructured Mg Alloys for Hydrogen Storage ......... 420
   13.3 Micro-Devices from BNM ................................ 423
   13.4 Innovation Potential and Application of
        Nanostructured Al Alloys .............................. 423
   13.5 Fabrication of Nanostructured Steels for Engineering .. 425
14 Conclusions ................................................ 434

Index ......................................................... 436


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:27:00 2019. Размер: 12,776 bytes.
Посещение N 1700 c 28.10.2014