Panton R.L. Incompressible flow (Hoboken, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPanton R.L. Incompressible flow. - 4th ed. - Hoboken: Wiley, 2013. - xviii, 878 p.: ill. - Bibliogr.: p.851-868. - Ind.: p.869-878. - ISBN 978-1-118-01343-4
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ xi
Preface to the Third Edition ................................. xiii
Preface to the Second Edition .................................. xv
Preface to the First Edition ................................. xvii
1  Continuum Mechanics .......................................... 1
   1.1  Continuum Assumption .................................... 3
   1.2  Fundamental Concepts, Definitions, and Laws ............. 3
   1.3  Space and Time .......................................... 5
   1.4  Density, Velocity, and Internal Energy .................. 7
   1.5  Interface between Phases ............................... 10
   1.6  Conclusions ............................................ 12
   Problems .................................................... 13
2  Thermodynamics .............................................. 15
   2.1  Systems, Properties, and Processes ..................... 15
   2.2  Independent Variables .................................. 16
   2.3  Temperature and Entropy ................................ 16
   2.4  Fundamental Equations of Thermodynamics ................ 18
   2.5  Euler's Equation for Homogenous Functions .............. 19
   2.6  Gibbs-Duhem Equation ................................... 20
   2.7  Intensive Forms of Basic Equations ..................... 20
   2.8  Dimensions of Temperature and Entropy .................. 21
   2.9  Working Equations ...................................... 21
   2.10 Ideal Gas .............................................. 22
   2.11 Incompressible Substance ............................... 25
   2.12 Compressible Liquids ................................... 26
   2.13 Conclusions ............................................ 26
   Problems .................................................... 26
3  Vector Calculus and Index Notation .......................... 28
   3.1  Index Notation Rules and Coordinate Rotation ........... 29
   3.2  Definition of Vectors and Tensors ...................... 32
   3.3  Special Symbols and Isotropic Tensors .................. 33
   3.4  Direction Cosines and the Laws of Cosines .............. 34
   3.5  Algebra with Vectors ................................... 35
   3.6  Symmetric and Antisymmetric Tensors .................... 37
   3.7  Algebra with Tensors ................................... 38
   3.8  Vector Cross-Product ................................... 41
   3.9  Alternative Definitions of Vectors ..................... 42
   3.10 Principal Axes and Values .............................. 44
   3.11 Derivative Operations on Vector Fields ................. 45
   3.12 Integral Formulas of Gauss and Stokes .................. 48
   3.13 Leibnitz's Theorem ..................................... 51
   3.14 Conclusions ............................................ 52
   Problems .................................................... 53
4  Kinematics of Local Fluid Motion ............................ 54
   4.1  Lagrangian Viewpoint ................................... 54
   4.2  Eulerian Viewpoint ..................................... 57
   4.3  Substantial Derivative ................................. 59
   4.4  Decomposition of Motion ................................ 60
   4.5  Elementary Motions in a Linear Shear Flow .............. 64
   4.6  Proof of Vorticity Characteristics ..................... 66
   4.7  Rate-of-Strain Characteristics ......................... 68
   4.8  Rate of Expansion ...................................... 69
   4.9  Streamline Coordinates ................................. 70
   4.10 Conclusions ............................................ 72
5  Basic Laws .................................................. 74
   5.1  Continuity Equation .................................... 74
   5.2  Momentum Equation ...................................... 78
   5.3  Surface Forces ......................................... 79
   5.4  Stress Tensor Derivation ............................... 79
   5.5  Interpretation of the Stress Tensor Components ......... 81
   5.6  Pressure and Viscous Stress Tensor ..................... 83
   5.7  Differential Momentum Equation ......................... 84
   5.8  Moment of Momentum, Angular Momentum, and Symmetry of
        Ту ..................................................... 89
   5.9  Energy Equation ........................................ 90
   5.10 Mechanical and Thermal Energy Equations ................ 92
   5.11 Energy Equation with Temperature as the Dependent
        Variable ............................................... 94
   5.12 Second Law of Thermodynamics ........................... 94
   5.13 Integral Form of the Continuity Equation ............... 95
   5.14 Integral Form of the Momentum Equation ................. 97
   5.15 Momentum Equation for a Deformable Particle of
        Variable Mass ......................................... 100
   5.16 Integral Form of the Energy Equation .................. 103
   5.17 Integral Mechanical Energy Equation ................... 104
   5.18 Jump Equations at Interfaces .......................... 106
   5.19 Conclusions ........................................... 108
   Problems ................................................... 108
6  Newtonian Fluids and the Navier-Stokes Equations ........... 111
   6.1  Newton's Viscosity Law ................................ 111
   6.2  Molecular Model of Viscous Effects .................... 114
   6.3  Non-Newtonian Liquids ................................. 118
   6.4  Wall Boundary Conditions; The No-Slip Condition ....... 120
   6.5  Fourier's Heat Conduction Law ......................... 123
   6.6  Navier-Stokes Equations ............................... 125
   6.7  Conclusions ........................................... 125
   Problems ................................................... 126
7  Some Incompressible Flow Patterns .......................... 127
   7.1  Pressure-Driven Flow in a Slot ........................ 127
   7.2  Mechanical Energy, Head Loss, and Bernoulli Equation .. 132
   7.3  Plane Couette Flow .................................... 136
   7.4  Pressure-Driven Flow in a Slot with a Moving Wall ..... 138
   7.5  Double Falling Film on a Wall ......................... 139
   7.6  Outer Solution for Rotary Viscous Coupling ............ 142
   7.7  The Rayleigh Problem .................................. 143
8  Conclusions ................................................ 148
   Problems ................................................... 148
   8.7  Proof of the Pi Theorem ............................... 167
   8.8  Dynamic Similarity and Scaling Laws ................... 170
   8.9  Similarity with Geometric Distortion .................. 171
   8.10 Nondimensional Formulation of Physical Problems ....... 174
   8.11 Conclusions ........................................... 179
   Problems ................................................... 180
8  Dimensional Analysis ....................................... 150
   8.1  Measurement, Dimensions, and Scale Change Ratios ...... 150
   8.2  Physical Variables and Functions ...................... 153
   8.3  Pi Theorem and Its Applications ....................... 155
   8.4  Pump or Blower Analysis: Use of Extra Assumptions ..... 159
   8.5  Number of Primary Dimensions .......................... 163
   8.6  Proof of Bridgman's Equation .......................... 165
9  Compressible Flow .......................................... 182
   9.1  Compressible Couette Flow: Adiabatic Wall ............. 182
   9.2  Flow with Power Law Transport Properties .............. 186
   9.3  Inviscid Compressible Waves: Speed of Sound ........... 187
   9.4  Steady Compressible Flow .............................. 194
   9.5  Conclusions ........................................... 197
   Problems ................................................... 197
10 Incompressible Flow ........................................ 198
   10.1 Characterization ...................................... 198
   10.2 Incompressible Flow as Low-Mach-Number Flow with
        Adiabatic Walls ....................................... 199
   10.3 Nondimensional Problem Statement ...................... 201
   10.4 Characteristics of Incompressible Flow ................ 205
   10.5 Splitting the Pressure into Kinetic and Hydrostatic
        Parts ................................................. 207
   10.6 Mathematical Aspects of the Limit Process M2 → 0 ...... 210
   10.7 Invariance of Incompressible Flow Equations under
        Unsteady Motion ....................................... 211
   10.8 Low-Mach-Number Flows with Constant-Temperature
        Walls ................................................. 213
   10.9 Energy Equation Paradox ............................... 216
   10.10 Conclusions .......................................... 218
   Problems ................................................... 219
11 Some Solutions of the Navier-Stokes Equations .............. 220
   11.1 Pressure-Driven Flow in Tubes of Various Cross
        Sections: Elliptical Tube ............................. 221
   11.2 Flow in a Rectangular Tube ............................ 224
   11.3 Asymptotic Suction Flow ............................... 227
   11.4 Stokes's Oscillating Plate ............................ 228
   11.5 Wall under an Oscillating Free Stream ................. 231
   11.6 Transient for a Stokes Oscillating Plate .............. 234
   11.7 Row in a Slot with a Steady and Oscillating Pressure
        Gradient .............................................. 236
   11.8 Decay of an Ideal Line Vortex (Oseen Vortex) .......... 241
   11.9 Plane Stagnation Point How (Hiemenz Row) .............. 245
   11.10 Burgers Vortex ....................................... 251
   11.11 Composite Solution for the Rotary Viscous Coupling ... 253
   11.12 Von Kármán Viscous Pump .............................. 257
   11.13 Conclusions .......................................... 262
12 Streamfunctions and the Velocity Potential ................. 266
   12.1 Streamlines ........................................... 266
   12.2 Streamfunction for Plane Flows ........................ 269
   12.3 Row in a Slot with Porous Walls ....................... 272
   12.4 Streamlines and Streamsurfaces for a Three-
        Dimensional Row ....................................... 274
   12.5 Vector Potential and the E2 Operator .................. 277
   12.6 Stokes's Streamfunction for Axisymmetric Flow ......... 282
   12.7 Velocity Potential and the Unsteady Bernoulli
        Equation .............................................. 283
   12.8 Row Caused by a Sphere with Variable Radius ........... 284
   12.9 Conclusions ........................................... 286
   Problems ................................................... 287
13 Vorticity Dynamics ......................................... 289
   13.1 Vorticity ............................................. 289
   13.2 Kinematic Results Concerning Vorticity ................ 290
   13.3 Vorticity Equation .................................... 292
   13.4 Vorticity Diffusion ................................... 293
   13.5 Vorticity Intensification by Straining Vortex Lines ... 295
   13.6 Production of Vorticity at Walls ...................... 296
   13.7 Typical Vorticity Distributions ....................... 300
   13.8 Development of Vorticity Distributions ................ 300
   13.9 Helmholtz's Laws for Inviscid Flow .................... 306
   13.10 Kelvin's Theorem ..................................... 307
   13.11 Vortex Definitions ................................... 308
   13.12 Inviscid Motion of Point Vortices .................... 310
   13.13 Circular Line Vortex ................................. 312
   13.14 Fraenkel-Norbury Vortex Rings ........................ 314
   13.15 Hill's Spherical Vortex .............................. 314
   13.16 Breaking and Reconnection of Vortex Lines ............ 317
   13.17 Vortex Breakdown ..................................... 317
   13.18 Conclusions .......................................... 323
   Problems ................................................... 324
14 Flows at Moderate Reynolds Numbers ......................... 326
   14.1 Some Unusual Row Patterns ............................. 327
   14.2 Entrance Rows ......................................... 330
   14.3 Entrance Row into a Cascade of Plates: Computer
        Solution by the Streamfunction-Vorticity Method ....... 331
   14.4 Entrance Flow into a Cascade of Plates: Pressure
        Solution .............................................. 341
   14.5 Entrance Row into a Cascade of Plates: Results ........ 342
   14.6 Row Around a Circular Cylinder ........................ 346
   14.7 Jeffrey-Hamel Row in a Wedge .......................... 362
   14.8 Limiting Case for Re → 0; Stokes Row .................. 367
   14.9 Limiting Case for Re → -∞ ............................. 368
   14.10 Conclusions .......................................... 372
   Problems ................................................... 372
15 Asymptotic Analysis Methods ................................ 374
   15.1 Oscillation of a Gas Bubble in a Liquid ............... 374
   15.2 Order Symbols, Gauge Functions, and Asymptotic
        Expansions ............................................ 377
   15.3 Inviscid Row over a Wavy Wall ......................... 380
   15.4 Nonuniform Expansions: Friedrich's Problem ............ 384
   15.5 Matching Process: Van Dyke's Rule ..................... 386
   15.6 Composite Expansions .................................. 391
   15.7 Characteristics of Overlap Regions and Common Parts ... 393
   15.8 Composite Expansions and Data Analysis ................ 399
   15.9 Lagerstrom's Problems ................................. 403
   15.10 Conclusions .......................................... 406
   Problems ................................................... 407
16 Characteristics of High-Reynolds-Number Flows .............. 409
   16.1 Physical Motivation ................................... 409
   16.2 Inviscid Main Rows: Euler Equations ................... 411
   16.3 Pressure Changes in Steady Flows: Bernoulli
        Equations ............................................. 414
   16.4 Boundary Layers ....................................... 418
   16.5 Conclusions ........................................... 428
   Problems ................................................... 428
17 Kinematic Decomposition of Flow Fields ..................... 429
   17.1  General Approach ..................................... 429
   17.2  Helmholtz's Decomposition; Biot-Savart Law ........... 430
   17.3  Line Vortex and Vortex Sheet ......................... 431
   17.4  Complex Lamellar Decomposition ....................... 434
   17.5  Conclusions .......................................... 437
   Problems ................................................... 437
18 Ideal Flows in a Plane ..................................... 438
   18.1 Problem Formulation for Plane Ideal Flows ............. 439
   18.2 Simple Plane Flows .................................... 442
   18.3 Line Source and Line Vortex ........................... 445
   18.4 Flow over a Nose or a Cliff ........................... 447
   18.5 Doublets .............................................. 453
   18.6 Cylinder in a Stream .................................. 456
   18.7 Cylinder with Circulation in a Uniform Stream ......... 457
   18.8 Lift and Drag on Two-Dimensional Shapes ............... 460
   18.9 Magnus Effect ......................................... 462
   18.10 Conformal Transformations ............................ 464
   18.11 Joukowski Transformation: Airfoil Geometry ........... 468
   18.12 Kutta Condition ...................................... 473
   18.13 Row over a Joukowski Airfoil: Airfoil Lift ........... 475
   18.14 Numerical Method for Airfoils ........................ 482
   18.15 Actual Airfoils ...................................... 484
   18.16 Schwarz-Christoffel Transformation ................... 487
   18.17 Diffuser or Contraction Row .......................... 489
   18.18 Gravity Waves in Liquids ............................. 494
   18.19 Conclusions .......................................... 499
   Problems ................................................... 499
19 Three-Dimensional Ideal Flows .............................. 502
   19.1 General Equations and Characteristics of Three-
        Dimensional Ideal Rows ................................ 502
   19.2 Swirling Row Turned into an Annulus ................... 504
   19.3 Row over a Weir ....................................... 505
   19.4 Point Source .......................................... 507
   19.5 Rankine Nose Shape .................................... 508
   19.6 Experiments on the Nose Drag of Slender Shapes ........ 510
   19.7 Row from a Doublet .................................... 513
   19.8 Row over a Sphere ..................................... 515
   19.9 Work to Move a Body in a Still Fluid .................. 516
   19.10 Wake Drag of Bodies .................................. 518
   19.11 Induced Drag: Drag due to Lift ....................... 519
   19.12 Lifting Line Theory .................................. 524
   19.13 Winglets ............................................. 525
   19.14 Added Mass of Accelerating Bodies .................... 526
   19.15 Conclusions .......................................... 531
   Problems ................................................... 531
20 Boundary Layers ............................................ 533
   20.1 Blasius Row over a Rat Plate .......................... 533
   20.2 Displacement Thickness ................................ 538
   20.3 Von Kármán Momentum Integral .......................... 540
   20.4 Von Kármán-Pohlhausen Approximate Method .............. 541
   20.5 Falkner-Skan Similarity Solutions ..................... 543
   20.6 Arbitrary Two-Dimensinoal Layers: Crank-Nicolson
        Difference Method ..................................... 547
   20.7 Vertical Velocity ..................................... 556
   20.8 Joukowski Airfoil Boundary Layer ...................... 558
   20.9 Boundary Layer on a Bridge Piling ..................... 563
   20.10 Boundary Layers Beginning at Infinity ................ 564
   20.11 Plane Boundary Layer Separation ...................... 570
   20.12 Axisymmteric Boundary Layers ......................... 573
   20.13 Jets ................................................. 576
   20.14 Far Wake of Nonlifting Bodies ........................ 579
   20.15 Free Shear Layers .................................... 582
   20.16 Unsteady and Erupting Boundary Layers ................ 584
   20.17 Entrance Row into a Cascade, Parabolized Navier-
         Stokes Equations ..................................... 587
   20.18 Three-Dimensional Boundary Layers .................... 589
   20.19 Boundary Layer with a Constant Transverse Pressure
         Gradient ............................................. 593
   20.20 Howarth's Stagnation Point ........................... 598
   20.21 Three-Dimensional Separation Patterns ................ 600
   20.22 Conclusions .......................................... 603
   Problems ................................................... 605
21 Flow at Low Reynolds Numbers ............................... 607
   21.1  General Relations for Re → 0: Stokes' s
         Equations ............................................ 607
   21.2  Global Equations for Stokes Flow ..................... 611
   21.3 Streamfunction for Plane and Axisymmetric Flows ....... 613
   21.4 Local Rows, Moffatt Vortices .......................... 616
   21.5 Plane Internal Rows ................................... 623
   21.6 Rows between Rotating Cylinders ....................... 628
   21.7 Rows in Tubes, Nozzles, Orifices, and Cones ........... 631
   21.8 Sphere in a Uniform Stream ............................ 636
   21.9 Composite Expansion for Flow over a Sphere ............ 641
   21.10 Stokes Row near a Circular Cylinder .................. 642
   21.11 Axisymmetric Particles ............................... 644
   21.12 Oseen's Equations .................................... 646
   21.13 Interference Effects ................................. 647
   21.14 Conclusions 648 Problems ............................. 649
   22 Lubrication Approximation ............................... 650
   22.1 Basic Characteristics: Channel Flow ................... 650
   22.2 Flow in a Channel with a Porous Wall .................. 653
   22.3 Reynolds Equation for Bearing Theory .................. 655
   22.4 Slipper Pad Bearing ................................... 657
   22.5 Squeeze-Film Lubrication: Viscous Adhesion ............ 659
   22.6 Journal Bearing ....................................... 660
   22.7 Hele-Shaw Flow ........................................ 664
   22.8 Conclusions ........................................... 667
   Problems ................................................... 668
23 Surface Tension Effects .................................... 669
   23.1 Interface Concepts and Laws ........................... 669
   23.2 Statics: Plane Interfaces ............................. 676
   23.3 Statics: Cylindrical Interfaces ....................... 679
   23.4 Statics: Attached Bubbles and Drops ................... 681
   23.5 Constant-Tension Rows: Bubble in an Infinite Stream ... 683
   23.6 Constant-Tension Rows: Capillary Waves ................ 686
   23.7 Moving Contact Lines .................................. 688
   23.8 Constant-Tension Rows: Coating Rows ................... 691
   23.9 Marangoni Rows ........................................ 695
   23.10 Conclusions .......................................... 703
         Problems ............................................. 705
24 Introduction to Microflows ................................. 706
   24.1 Molecules ............................................. 706
   24.2 Continuum Description ................................. 708
   24.3 Compressible Flow in Long Channels .................... 709
   24.4 Simple Solutions with Slip ............................ 712
   24.5 Gases ................................................. 715
   24.6 Couette Flow in Gases ................................. 719
   24.7 Poiseuille Flow in Gases .............................. 722
   24.8 Gas Flow over a Sphere ................................ 726
   24.9 Liquid Rows in Tubes and Channels ..................... 728
   24.10 Liquid Rows near Walls; Slip Boundaries .............. 730
   24.11 Conclusions .......................................... 735
25 Stability and Transition ................................... 737
   25.1 Linear Stability and Normal Modes as Perturbations .... 738
   25.2 Kelvin-Helmholtz Inviscid Shear Layer Instability ..... 739
   25.3 Stability Problems for Nearly Parallel Viscous Rows ... 744
   25.4 Orr-Sommerfeld Equation ............................... 746
   25.5 Invsicid Stability of Nearly Parallel Rows ............ 747
   25.6 Viscous Stability of Nearly Parallel Rows ............. 749
   25.7 Experiments on Blasius Boundary Layers ................ 752
   25.8 Transition, Secondary, Instability, and Bypass ........ 756
   25.9 Spatially Developing Open Rows ........................ 759
   25.10 Transition in Free Shear Rows ........................ 759
   25.11 Poiseuille and Plane Couette Rows .................... 761
   25.12 Inviscid Instability of Rows with Curved
         Streamlines .......................................... 763
   25.13 Taylor Instability of Couette Flow ................... 765
   25.14 Stability of Regions of Concentrated Vorticity ....... 767
   25.15 Other Instabilities: Taylor, Curved, Pipe,
         Capillary Jets, and Gцrtier .......................... 769
   25.16 Conclusions .......................................... 771
26 Turbulent Flows ............................................ 772
   26.1 Types of Turbulent Rows ............................... 772
   26.2 Characteristics of Turbulent Rows ..................... 773
   26.3 Reynolds Decomposition ................................ 776
   26.4 Reynolds Stress ....................................... 777
   26.5 Correlation of Ructuations ............................ 780
   26.6 Mean and Turbulent Kinetic Energy ..................... 782
   26.7 Energy Cascade: Kolmogorov Scales and Taylor
        Microscale ............................................ 784
   26.8 Wall Turbulence: Channel Flow Analysis ................ 789
   26.9 Channel and Pipe Flow Experiments ..................... 797
   26.10 Boundary Layers ...................................... 800
   26.11 Wall Turbulence: Fluctuations ........................ 804
   26.12 Turbulent Structures ................................. 811
   26.13 Free Turbulence: Plane Shear Layers .................. 817
   26.14 Free Turbulence: Turbulent Jet ....................... 822
   26.15 Bifurcating and Blooming Jets ........................ 824
   26.16 Conclusions .......................................... 825
A  Properties of Fluids ....................................... 827
В  Differential Operations in Cylindrical and Spherical
   Coordinates ................................................ 828
С  Basic Equations in Rectangular, Cylindrical, and
   Spherical Coordinates ...................................... 833
D  Streamfunction Relations in Rectangular, Cylindrical, and
   Spherical Coordinates ...................................... 838
E  Matlab® Stagnation Point Solver ............................ 842
F  Matlab® Program for Cascade Entrance ....................... 844
G  Matlab® Boundary Layer Program ............................. 847
References .................................................... 851
Index ......................................................... 869


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:26:58 2019. Размер: 30,332 bytes.
Посещение N 1544 c 14.10.2014