Protein-lipid interaction: from membrane domains to cellular networks (Weinhei, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаProtein-lipid interaction: from membrane domains to cellular networks / ed. by L.K.Tamm. - Weinhei: Wiley-VCH, 2005. - xxvi, 444 p.: ill. - Пер. загл.: Белково-липидные взаимодействия: от мембранных доменов к сотовым сетям. - ISBN 978-3-527-31151-4
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ....................................................... VII
List of Contributors .......................................... XIX

Part 1  How Lipids Shape Proteins
1    Lipid Bilayers, Translocons and the Shaping of
     Polypeptide Structure ...................................... 3
     Stephen H. White, Tara Hessa, and Gunnar von Heijne
1.1  Introduction ............................................... 3
1.2  Membrane Proteins: Intrinsic Interactions .................. 5
     1.2.1  Physical Determinants of Membrane Protein
            Stability: The Bilayer Milieu ....................... 5
     1.2.2  Physical Determinants of Membrane Protein
            Stability: Energetics of Peptides in Bilayers ....... 9
     1.2.3  Physical Determinants of Membrane Protein
            Stability: Helix-Helix Interactions in Bilayers .... 13
1.3  Membrane Proteins: Formative Interactions ................. 14
     1.3.1  Connecting Translocon-assisted Folding to
            Physical Hydrophobicity Scales: The Interfacial
            Connection ......................................... 14
     1.3.2  Connecting Translocon-assisted Folding to
            Physical Hydrophobicity Scales: Transmembrane
            Insertion of Helices ............................... 16
1.4  Perspectives .............................................. 21
     References ................................................ 22

2    Folding and Stability of Monomeric ^-Barrel Membrane
     Proteins .................................................. 27
     Jörg H. Kleinschmidt
2.1  Introduction .............................................. 27
2.2  Stability of β-Barrel Membrane Proteins ................... 29
     2.2.1  Thermodynamic Stability of FepA in Detergent
            Micelles ........................................... 29
     2.2.2  Thermodynamic Stability of OmpA in Phospholipids
            Bilayers ........................................... 30
     2.2.3  Thermal Stability of FhuA in Detergent Micelles .... 31
2.3  Insertion and Folding of Transmembrane β-Barrel
     Proteins .................................................. 32
     2.3.1  Insertion and Folding of β-Barrel Membrane
            Proteins in Micelles ............................... 32
     2.3.2  Oriented Insertion and Folding into Phospholipid
            Bilayers ........................................... 32
     2.3.3  Assemblies of Amphiphiles Induce Structure
            Formation in β-Barrel Membrane Proteins ............ 33
     2.3.4  Electrophoresis as a Tool to Monitor Insertion
            and Folding of β-Barrel Membrane Proteins .......... 34
     2.3.5  pH and Lipid Headgroup Dependence of the Folding
            of β-Barrel Membrane Proteins ...................... 35
2.4  Kinetics of Membrane Protein Folding ...................... 35
     2.4.1  Rate Law for β-Barrel Membrane Protein Folding
            and Lipid Acyl Chain Length Dependence ............. 35
     2.4.2  Synchronized Kinetics of Secondary and Tertiary
            Structure Formation of the β-Barrel OmpA ........... 36
     2.4.3  Interaction of OmpA with the Lipid Bilayer is
            Faster than the Formation of Folded OmpA ........... 36
2.5  Folding Mechanism of the β-Barrel of OmpA
     into DOPC Bilayers ........................................ 37
     2.5.1  Multistep Folding Kinetics and Temperature
            Dependence of OmpA Folding ......................... 37
     2.5.2  Characterization of Folding Intermediates by
            Fluorescence Quenching ............................. 38
     2.5.3  The β-Barrel Domain of OmpA Folds and Inserts by
            a Concerted Mechanism .............................. 40
2.6  Protein-Lipid Interactions at the Interface of
     β-Barrel Membrane Proteins ................................ 42
     2.6.1  Stoichiometry of the Lipid-Protein Interface ....... 42
     2.6.2  Lipid Selectivity of β-Barrel Membrane Proteins .... 42
2.7  Orientation of β-Barrel Membrane Proteins in Lipid
     Bilayers .................................................. 43
     2.7.1  Lipid Dependence of the β-Barrel Orientation
            Relative to the Membrane ........................... 43
     2.7.2  Inclination of the β-Strands Relative to the
            β-Barrel Axis in Lipid Bilayers .................... 44
     2.7.3  Hydrophobic Matching of the β-Barrel and the
            Lipid Bilayer ...................................... 44
2.8  In vivo Requirements for the Folding of OMPs .............. 45
     2.8.1  Amino Acid Sequence Constraints for OmpA Folding
            in vivo ............................................ 45
     2.8.2  Periplasmic Chaperones ............................. 45
     2.8.3  Insertion and Folding of the β-Barrel OmpA is
            Assisted by Skp and LPS ............................ 46
     2.8.4  Role of Omp85 in Targeting or Assembly of
            β-Barrel Membrane Proteins ......................... 48
2.9  Outlook ................................................... 51
     References ................................................ 52

3    A Paradigm of Membrane Protein Folding: Principles,
     Kinetics and Stability of Bacteriorhodopsin Folding ....... 57
     Paula J. Booth
3.1  Introduction .............................................. 57
3.2  Principles of Transmembrane α-Helical Membrane Protein
     Folding: A Thermodynamic Model for Bacteriorhodopsin ...... 59
3.3  Bacteriorhodopsin Stability ............................... 60
     3.3.1  Side-chain Contributions to Helix Interactions
            and the Role of Pro ................................ 61
     3.3.2  Helix-connecting Loops ............................. 62
3.4  Pulling the Protein Out of the Membrane ................... 63
3.5  Bacteriorhodopsin Folding Kinetics ........................ 64
     3.5.1  Cotranslational Insertion .......................... 65
     3.5.2  Retinal Binding Studies to Apomembrane ............. 65
     3.5.3  Unfolding, Refolding and Kinetic Studies in vitro .. 67
3.6  Controlling Membrane Protein Folding ...................... 69
3.7  Conclusions ............................................... 71
     3.7.1  Summary of Bacteriorhodopsin Folding ............... 71
     3.7.2  Implications for Transmembrane a-Helical Membrane
            Protein Folding .................................... 73
     References ................................................ 75

4    Post-integration Misassembly of Membrane Proteins and
     Disease ................................................... 81
     Charles R. Sanders
4.1  Introduction .............................................. 81
4.2  A Given IMP May be Subject to Numerous Disease-linked
     Mutations ................................................. 82
4.3  Ligand Rescue of Misassembly-prone Membrane Proteins:
     Implications .............................................. 84
4.4  What IMP Properties Affect Folding Efficiency in the
     Cell? ..................................................... 87
4.5  Common Mutations in Transmembrane Domains That Lead to
     Misassembly and Disease ................................... 89
4.6  Correlating Biophysical, Cell-biological and Biomedical
     Measurements .............................................. 90
     References ................................................ 91

Part 2  How Proteins Shape Lipids

5    A Census of Ordered Lipids and Detergents in X-ray
     Crystal Structures of Integral Membrane Proteins .......... 97
     Michael C. Wiener
5.1  Introduction .............................................. 97
5.2  Results ................................................... 98
5.3  Illustrative Examples of Selected Bound Lipids,
     Detergents and Related Molecules ......................... 103
     5.3.1  Integral Membrane Protein Structures Contain
            Ordered Native Lipids ............................. 103
     5.3.2  Structures of Lipids in Membrane Protein
            Co-crystals Differ from Those in Pure Lipid
            Crystals .......................................... 107
     5.3.3  Native Lipids can Stabilize and Preserve
            Protein-Protein Interfaces ........................ 108
     5.3.4  Multiple Acyl Chain Conformations Exist for
            Efficient Packing with Protein Interfaces ......... 108
     5.3.5  Lipid Acyl Chains Interact Primarily with
            Aliphatic and Aromatic Amino Acid Side-chains ..... 109
     5.3.6  Unusual Lipid/Detergent Conformations Occur at
            the Protein-Lipid Interface ....................... 109
     5.3.7  A Bilayer Structure is Present in Crystals Grown
            from the LCP ...................................... 112
5.4  Conclusion ............................................... 114
     References ............................................... 115

6    Lipid and Detergent Interactions with Membrane Proteins
     Derived from Solution Nuclear Magnetic Resonance ......... 119
     Ashish Arora
6.1  Introduction ............................................. 119
6.2  Heteronuclear Solution NMR of Protein/Detergent
     Complexes ................................................ 120
6.3  Choice of Detergents ..................................... 122
6.4  Size and Shape of Pure Detergent Micelles and
     Detergent/Protein Complexes .............................. 124
6.5  Sample Preparation for Solution NMR Measurements ......... 125
6.6  Protein/Detergent Interactions Monitored by NMR
     Spectroscopy ............................................. 228
6.7  Dynamics and Conformational Transitions of Membrane
     Proteins in Detergent Micelles ........................... 130
6.8  MD Simulations of Protein/Detergent Complexes ............ 131
6.9  Implications on the Structure and Function of Membrane
     Proteins in Biological Membranes ......................... 133
     References ............................................... 134

Part 3  Membrane Penetration by Toxins
7    Lipid Interactions of a-Helical Protein Toxins ........... 141
     Gregor Anderluh and Jeremy H. Lakey
7.1  Introduction ............................................. 141
     7.1.1  The Two Secondary Structures Compared ............. 141
     7.1.2  Lessons from a Potassium Channel .................. 145
7.2  Pore-forming Colicins .................................... 145
     7.2.1  Outer Membrane Interactions ....................... 146
     7.2.2  Colicin A Requires Acidic Lipids .................. 147
     7.2.3  The Open Channel .................................. 148
     7.2.4  The Colicin-Phospholipid Complex .................. 149
     7.2.5  Other Similar Proteins ............................ 150
7.3  Actinoporins ............................................. 151
     7.3.1  Initial Lipid Binding ............................. 152
     7.3.2  Helix Insertion ................................... 154
     7.3.3  The Oligomeric Pore ............................... 155
7.4  Conclusion ............................................... 156
     References ............................................... 157

8    Membrane Recognition and Pore Formation by Bacterial
     Pore-forming Toxins ...................................... 163
     Alejandro P. Heuck and Arthur E. Johnson
8.1  Introduction ............................................. 163
8.2  Classification of Bacterial PFTs ......................... 163
     8.2.1  α-PFTs ............................................ 164
     8.2.2  β-PFTs ............................................ 166
8.3  A General Mechanism of Pore Formation? ................... 166
8.4  Membrane Recognition ..................................... 169
     8.4.1  Recognition of Specific Membrane Lipids ........... 170
     8.4.2  Recognition of Membrane-anchored Proteins or
            Carbohydrates ..................................... 172
     8.4.3  The Role of Membrane Lipid Domains ................ 173
8.5  Oligomerization on the Membrane Surface .................. 175
     8.5.1  Oligomerization Triggered by Lipid-induced
            Conformational Changes ............................ 176
     8.5.2  Oligomerization Following Proteolytic Activation
            of Toxins ......................................... 178
8.6  Membrane Penetration and Pore Formation .................. 179
8.7  Unresolved Issues ........................................ 181
     References ............................................... 183

9    Mechanism of Membrane Permeation and Pore Formation by
     Antimicrobial Peptides ................................... 187
     Yechiel Shai
9.1  Introduction ............................................. 187
9.2  The Cell Membrane is the Major Binding Site for Most
     Cationic Antimicrobial Peptides .......................... 188
     9.2.1  Non-receptor-mediated Interaction of
            Antimicrobial Peptides with their Target Cells .... 189
     9.2.2  A Receptor-mediated Interaction of Antimicrobial
            Peptides with their Target Cells .................. 191
9.3  Parameters Involved in the Selection of Target Cells by
     Antimicrobial Peptides ................................... 192
     9.3.1  The Role of the Composition of the Cell Wall and
            the Cytoplasmic Membrane .......................... 193
     9.3.2  The Role of the Peptide Chain and Its
            Organization ...................................... 194
9.4  The Lethal Event Caused by Antimicrobial Peptides ........ 201
9.5  How do Antimicrobial Peptides Damage the Integrity of
     the Target Cell Membrane? ................................ 202
     9.5.1  Membrane-imposed Amphipathic Structure ............ 202
     9.5.2  Molecular Mechanisms of Membrane Permeation ....... 204
     9.5.3  The Molecular Architecture of the Permeation
            Pathway ........................................... 208
9.6  Summary and Conclusions .................................. 209
     References ............................................... 210

Part 4  Mechanisms of Membrane Fusion

10   Cell Fusion in Development and Disease ................... 221
     Benjamin Podbileivicz and Leonid V. Chernomordik
10.1 Introduction ............................................. 221
10.2 Developmental Cell Fusion for Health ..................... 221
     10.2.1 Muscles ........................................... 222
     10.2.3 Comparison between Cell Fusion in a Worm, a
            Fly and Vertebrates ............................... 231
10.3 Cell Fusion in Diseases .................................. 233
     10.3.1  Cell Fusion Mediated by Enveloped Viruses ........ 233
10.4 Dissection of Developmental Fusion Based on Viral
     Fusion Analogies ......................................... 239
     10.4.1 Activation of a Developmental Fusogen ............. 239
     10.4.2 Dissection of Developmental Cell Fusion ........... 239
     10.4.3 Direct Cell Fusion Promotion or Indirect
            Relaxation of Fusion Blocks ....................... 240
10.5 Concluding Remarks ....................................... 240
     References ............................................... 241

11   Molecular Mechanisms of Intracellular Membrane Fusion .... 245
     Olga Vites and Reinhard Jahn
11.1 Introduction ............................................. 245
11.2 Intracellular Fusion Reactions - An Overview ............. 246
11.3 Tethering and Docking .................................... 247
11.4 SNARE Proteins - The Fusion Catalysts? ................... 249
     11.4.1 Assembly-Disassembly Cycle of SNARE Proteins ...... 249
     11.4.2 N-terminal Domains of SNAREs - Recruiting
            Proteins or Regulating SNARE Function? ............ 251
     11.4.3 "Zippering" Model for SNARE-mediated Membrane
            Fusion ............................................ 252
     11.4.4 Trans-complexes - Intermediates in the Fusion
            Pathway? .......................................... 253
     11.4.5 Acceptor Complexes, Topology and Specificity ...... 256
11.5 SM Proteins and Other Regulators ......................... 262
     11.5.1 SM Proteins ....................................... 263
11.6 Fusion Pores ............................................. 264
     11.6.1 Measuring Fusion Pore Opening and Closure ......... 265
     11.6.2 The Role of Proteins in Controlling Fusion
            Pore Opening ...................................... 266
11.7 Concluding Remarks ....................................... 267
     List of Abbreviations .................................... 267
     References ............................................... 268

12   Interplay of Proteins and Lipids in Virus Entry by
     Membrane Fusion .......................................... 279
     Alex L. Lai, Yinling Li, and Lukas К. Tamm
12.1 Introduction ............................................. 279
12.2 Fusion of Pure Lipid Bilayers ............................ 281
12.3 Viral Protein Sequences that Mediate Lipid Bilayer
     Fusion ................................................... 284
     12.3.1 Fusion Peptides ................................... 284
     12.3.2 Transmembrane Domains ............................. 285
     12.3.3 Other Regions of the Fusion Protein ............... 285
12.4 Interactions of Fusion Peptides with Lipid Bilayers ...... 286
     12.4.1 HIV Fusion Peptide-Bilayer Interactions ........... 287
     12.4.2 Influenza Fusion Peptide Structure ................ 288
     12.4.3 Influenza Fusion Peptide Mutants .................. 290
     12.4.4 Binding of Fusion Peptides to Lipid Bilayers ...... 290
     12.4.5 Sendai, Measles and Ebola Fusion Peptide-Bilayer
            Interactions ...................................... 290
     12.4.6 Perturbation of Bilayer Structure by Fusion
            Peptides .......................................... 291
12.5 Interactions of Transmembrane Domains with Lipid
     Bilayers ................................................. 292
12.6 Structure-Function (Fusion) Relationships of Membrane-
     interactive Viral Fusion Protein Domains ................. 294
     12.6.1 Fusion Peptide Mutants ............................ 294
     12.6.2 Transmembrane Domain Mutants ...................... 295
12.7 Possible Mechanisms for Initiating the Formation of
     Viral Fusion Pores ....................................... 296
     References ............................................... 300

Part 5 Cholesterol, Lipid Rafts, and Protein Sorting
13   Protein-Lipid Interactions in the Formation of Raft
     Microdomains in Biological Membranes ..................... 307
     Akihiro Kusumi, Kenichi Suzuki, Junko Kondo, Nobuhiro
     Morone, and Yasuhiro Umemura
13.1 Many Plasma Membrane Functions are Mediated by Molecular
     Complexes, Microdomains and Membrane Skeleton-based
     Compartments ............................................. 307
13.2 Timescales, Please! ...................................... 309
13.3 Four Types of Membrane Domains ........................... 310
13.4 The Cell Membrane is a Two-dimensional Non-ideal Liquid
     Containing Dynamic Structures on Various Time-Space
     Scales ................................................... 324
13.5 A Definition of Raft Domains ............................. 325
13.6 The Original Raft Hypothesis ............................. 316
13.7 Are there Raft Domains in Steady-state Cells in the
     Absence of Extracellular Stimulation? .................... 316
     13.7.1 Standard Immunofluorescence or Immunoelectron
            Microscopy Failed to Detect Raft-like Domains
            in the Plasma Membrane of Steady-state Cells ...... 317
     13.7.2 The Recovery of a Molecule in Detergent-
            resistant Membrane (DRM) Fractions Might Infer
            its Raft Association in the Cell Membrane, but
            the Relationship between DRM Fractions and Raft
            Domains is Complicated ............................ 317
     13.7.3 The Size of Rafts in Plasma Membranes of Steady-
            state Cells may be 10 nm or Less .................. 319
     13.7.4 Mushroom Model for the Steady-state Raft .......... 322
13.8 Stabilized Rafts Induced by Protein Clustering in Plasma
     and Golgi Membranes ...................................... 324
     13.8.1 Clustering of Raft Molecules by Ligand Binding
            or Crosslinking Induces Stabilized Rafts
            ("Receptor-cluster Rafts") ........................ 324
     13.8.2 How can Raft Molecule Clustering Induce
            Stabilized Rafts? ................................. 324
13.9 Can Receptor-cluster Rafts Work as Platforms to
     Facilitate the Assembly of Raftophilic Molecules? ........ 326
     13.9.1 Benchmarks for Experiments Examining the
            Colocalization of Raftophilic Molecules ........... 326
     13.9.2 Simultaneous Crosslinking of Two GPI-anchored
            Receptors ......................................... 327
     13.9.3 Sequential Crosslinking of One Species of
            GPI-anchored Receptors Followed by Crosslinking
            of a Second Species without Fixation .............. 328
     13.9.4 Examination of the Recruitment of
            Non-crosslinked Second Raftophilic Molecules to
            Crosslinked GPI-anchored Receptor Clusters ........ 328
     13.9.5 Difficulty in Colocalization Experiments using
            Raftophilic Molecules: Low Levels of
            Colocalization and Quantitative Reproducibility
            Due to Sensitivity to Subtle Differences in
            Experimental Conditions and Protocols ............. 329
13.10 Timescales Again! Transient Colocalization of
      Raftophilic Molecules ................................... 329
13.11 Modified Raft Hypothesis ................................ 331
      References .............................................. 332

14   Protein and Lipid Partitioning in Locally Heterogeneous
     Model Membranes .......................................... 337
     Petra Schwille, Nicoktta Kahya, and Kirsten Bacia
14.1 Introduction: Why Should We Use Simple Model Membranes
     to Gain Insight into Complex Membrane Organization? ...... 337
     14.1.1 Relation of Domain Structure to a Biological
            Function .......................................... 337
     14.1.2 An Accessible Detection Method .................... 338
     14.1.3 The Term "Raff .................................... 338
14.2 Biomimetic Membranes ..................................... 340
     14.2.1 GUVs: Properties and Preparation .................. 342
14.3 Methods of Investigation of Domain Formation in
     Biomimetic Membranes ..................................... 343
     14.3.1 Electron Microscopy ............................... 343
     14.3.2 Atomic Force Microscopy (AFM) ..................... 343
     14.3.3 Near-field Scanning Optical Microscopy (NSOM) ..... 344
     14.3.4 Fluorescence Imaging (Confocal, Multi-photon) ..... 344
     14.3.5 Fluorescence Photobleaching Recovery (FPR) or
            Fluorescence Recovery after Photobleaching
            (FRAP) ............................................ 344
     14.3.6 Single Particle Tracking (SPT) .................... 344
     14.3.7 Fluorescence Correlation Spectroscopy (FCS) ....... 345
14.4 Lipid Domain Assembly in GUVs ............................ 345
     14.4.1 Phase Separation .................................. 345
     14.4.2 Binary Lipid Systems .............................. 348
     14.4.3 Ternary Lipid Systems ............................. 351
     14.4.4 Effect of Sterols on Lipid Segregation ............ 353
     14.4.5 Lipid Dynamics in Domain-exhibiting GUVs .......... 354
14.5 Spatial Organization and Dynamics of Membrane
     Proteins in GUVs ......................................... 357
14.6 From Model to Cellular Membranes ......................... 358
     14.6.1 Model Membranes Constitute Test Systems for
            Developing New and Improving Existing Detection
            Techniques ........................................ 358
     14.6.2 Direct Comparison Between Results Obtained on
            Model and Native Membranes ........................ 361
     14.6.3 Model Membranes Demonstrate What Structures Can
            be Potentially Formed by Lipids and Proteins,
            and Suggest Mechanisms for Fulfilling in vivo
            Functions ......................................... 361
     References ............................................... 362

Part 6  Targeting of Extrinsic Membrane Protein Modules to
Membranes and Signal Transduction
15   In vitro and Cellular Membrane-binding Mechanisms
     of Membrane-targeting Domains ............................ 369
     Wonhwa Cho and Robert V. Stahelin
15.1 Introduction ............................................. 369
15.2 Membrane Interactions of Membrane-targeting Domains ...... 370
     15.2.1 Interfacial Location of Membrane-targeting
            Domains ........................................... 370
     15.2.2 Energetics and Kinetics of Membrane-Protein
            Interactions ...................................... 371
15.3 CI Domains ............................................... 373
     15.3.1 Occurrence and Structure .......................... 373
     15.3.2 Lipid Specificity ................................. 374
     15.3.3 Membrane-binding Mechanisms ....................... 374
     15.3.4 Subcellular Localization .......................... 375
15.4 C2 Domains ............................................... 376
     15.4.1 Occurrence and Structure .......................... 376
     15.4.2 Lipid Specificity ................................. 376
     15.4.3 Membrane Binding Mechanisms ....................... 377
     15.4.4 Subcellular Localization .......................... 378
15.5 PH Domains ............................................... 378
     15.5.1 Occurrence, Structure and Lipid Specificity ....... 378
     15.5.2 Membrane-binding Mechanisms ....................... 380
     15.5.3 Subcellular Localization .......................... 380
15.6 FYVE Domains ............................................. 380
     15.6.1 Occurrence, Structure and Lipid Specificity ....... 380
     15.6.2 Membrane-binding Mechanism ........................ 382
     15.6.3 Subcellular Localization .......................... 383
15.7 PX Domains ............................................... 384
     15.7.1 Occurrence, Structure and Lipid Specificity ....... 384
     15.7.2 Membrane-binding Mechanism ........................ 385
     15.7.3 Subcellular Localization .......................... 385
15.8 ENTH and ANTH Domains .................................... 387
     15.8.1 Occurrence, Structure and Lipid Specificity ....... 387
     15.8.2 Membrane-binding Mechanism ........................ 387
15.9 BAR Domains .............................................. 389
15.10 FERM Domains ............................................ 390
15.11 Tubby Domains ........................................... 391
15.12 Other Phosphoinositide-binding Domains .................. 391
15.13 Perspectives ............................................ 392
     References ............................................... 393

16   Structure and Interactions of C2 Domains at Membrane
     Surfaces ................................................. 403
     David S. Cafiso
16.1 Introduction ............................................. 403
16.2 C2 Domains: Ca2+-dependent and Ca2+-independent
     Membrane Binding ......................................... 404
16.3 What Drives Membrane Targeting of C2 Domains? ............ 405
16.4 Electrostatic Binding of Simple Linear Protein Motifs .... 406
16.5 The Results of Electrostatic Calculations on C2 Domains .. 408
16.6 Determining the Interactions and Positions of C2
     Domains .................................................. 410
     16.6.1 Site-directed Mutagenesis ......................... 410
     16.6.2 Chemical Labeling ................................. 410
     16.6.3 Fluorescence ...................................... 411
     16.6.4 Site-directed Spin Labeling (SDSL) to Determine
            C2 Domain Orientation ............................. 411
16.7 Proteins with Multiple C2 Domains ........................ 416
16.8 Interactions of Phosphoinositides with C2 Domains ........ 417
     References ............................................... 418

17   Structural Mechanisms of Allosteric Regulation
     by Membrane-binding Domains .............................. 423
     Bertram Canagarajah, William J. Smith, and James H.
     Hurley
17.1 Introduction ............................................. 423
17.2 How Membranes and PH Domains Regulate Rho Family-
     specific Guanine Nucleotide Exchange Factors (GEFs) ...... 424
     17.2.1 DH and PH Domain Rho GEFs ......................... 425
     17.2.2 Regulation of GEF Activity by PH Domains .......... 425
17.3 Regulation of G-protein Receptor Kinase (GRK) 2 Activity
     by Lipids and the Gβγ Subunit at the Membrane ............ 429
17.4 Lipid Activation of Rac-GAP Activity: /Й-Chimaerin ....... 432
     17.4.1 The CI Domain of β2-Chimaerin is Buried ........... 432
     17.4.2 Mechanism of Allosteric Rac-GTPase Activation by
            the CI Domain ..................................... 434
     References ............................................... 435

Subject Index ................................................. 437


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:26:44 2019. Размер: 34,168 bytes.
Посещение N 1117 c 12.08.2014