D'Alessandro D. Introduction to quantum control and dynamics (Boca Raton, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаD'Alessandro D. Introduction to quantum control and dynamics. - Boca Raton: Chapman & Hall/CRC, 2008. - (Chapman & Hall/CRC applied mathematics and nonlinear science series). - Пер. загл.: Введение в квантовое управление и динамику. - ISBN 978-1-58488-884-0
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
1    Quantum Mechanics .......................................... 1
1.1  States and Operators ....................................... 1
     1.1.1  State of a quantum system ........................... 1
     1.1.2  Linear operators .................................... 5
     1.1.3  State of composite systems and tensor product
            spaces .............................................. 8
     1.1.4  State of an ensemble; Density operator ............. 11
     1.1.5  Vector and matrix representation of states and
            operators .......................................... 13
1.2  Observables and Measurement ............................... 15
     1.2.1  Observables ........................................ 15
     1.2.2  The measurement postulate .......................... 20
     1.2.3  Measurements on ensembles .......................... 24
1.3  Dynamics of Quantum Systems ............................... 25
     1.3.1  Schrцdinger picture ................................ 26
     1.3.2  Heisenberg and interaction picture ................. 29
1.4  Notes ..................................................... 30
     1.4.1  Interpretation of quantum dynamics as information
            processing ......................................... 30
     1.4.2  Direct sum versus tensor product for composite
            systems ............................................ 31
1.5  Exercises ................................................. 32

2    Modeling of Quantum Control Systems; Examples ............. 35
2.1  Quantum Theory of Interaction of Particles and Field ...... 35
     2.1.1  Classical electrodynamics .......................... 36
     2.1.2  Canonical quantization ............................. 46
     2.1.3  An example of canonical quantization: The quantum
            harmonic oscillator ................................ 50
     2.1.4  Quantum mechanical Hamiltonian ..................... 53
2.2  Approximations and Modeling; Molecular Systems ............ 56
     2.2.1  Approximations for molecular and atomic systems .... 56
     2.2.2  Controlled Schrцdinger wave equation ............... 59
2.3  Spin Dynamics and Control ................................. 62
     2.3.1  Introduction of the spin degree of freedom in the
            dynamics of matter and fields ...................... 63
     2.3.2  Spin networks as control systems ................... 66
2.4  Mathematical Structure of Quantum Control Systems ......... 69
2.5  Notes and References ...................................... 72
2.6  Exercises ................................................. 73

3    Controllability ........................................... 75
3.1  Lie Algebras and Lie Groups ............................... 76
     3.1.1  Basic definitions for Lie algebras ................. 76
     3.1.2  Lie groups ......................................... 79
3.2  Controllability Test: The Dynamical Lie Algebra ........... 81
     3.2.1  Procedure to generate a basis of the dynamical
            Lie algebra ........................................ 82
     3.2.2  Uniform finite generation of compact Lie groups
            and universal quantum gates ........................ 83
3.3  Notions of Controllability for the State .................. 84
3.4  Pure State Controllability ................................ 85
     3.4.1  Lie transformation groups .......................... 86
     3.4.2  Coset spaces and homogeneous spaces ................ 87
     3.4.3  The special unitary group and its action on the
            unit sphere ........................................ 88
     3.4.4  The symplectic group and its action on the unit
            sphere ............................................. 89
     3.4.5  Test for pure state controllability ................ 93
3.5  Equivalent State Controllability .......................... 94
3.6  Equality of Orbits ........................................ 95
     3.6.1  Density matrix controllability ..................... 97
3.7  Notes and References ...................................... 98
     3.7.1  Alternate tests of controllability ................. 98
     3.7.2  Pure state controllability and existence of
            constants of motion ............................... 100
     3.7.3  Bibliographical notes ............................. 102
     3.7.4  Some open problems ................................ 102
3.8  Exercises ................................................ 103

4    Observability and State Determination .................... 107
4.1  Quantum State Tomography ................................. 107
     4.1.1  Example: Quantum tomography of a spin-1/2 
            particle .......................................... 107
     4.1.2  General quantum tomography ........................ 109
     4.1.3  Example: Quantum tomography of a spin-1/2 particle
            (ctd.) ............................................ 111
4.2  Observability ............................................ 113
     4.2.1  Equivalence classes of indistinguishable states;
            Partition of the state space ...................... 114
4.3  Observability and Methods for State Reconstruction ....... 118
     4.3.1  Observability conditions and tomographic methods .. 118
     4.3.2  System theoretic methods for quantum state
            reconstruction .................................... 119
4.4  Notes and References ..................................... 121
4.5  Exercises ................................................ 121

5    Lie Group Decompositions and Control ..................... 123
5.1  Decompositions of SU(2) and Control of Two Level
     Systems .................................................. 125
     5.1.1  The Lie groups SU(2) and SO(3) .................... 125
     5.1.2  Euler decomposition of SU(2) and SO(3) ............ 126
     5.1.3  Determination of the angles in the Euler
            decomposition of SU(2) ............................ 127
     5.1.4  Application to the control of two level quantum
            systems ........................................... 128
5.2  Decomposition in Planar Rotations ........................ 130
5.3  Cartan Decompositions .................................... 131
     5.3.1  Cartan decomposition of semisimple Lie algebras ... 132
     5.3.2  The decomposition theorem for Lie groups .......... 132
     5.3.3  Refinement of the decomposition; Cartan
            subalgebras ....................................... 133
     5.3.4  Cartan decompositions of su(n) .................... 135
     5.3.5  Cartan involutions of su(n) and quantum
            symmetries ........................................ 137
     5.3.6  Computation of the factors in the Cartan
            decompositions of SU(n) ........................... 139
5.4  Levi Decomposition ....................................... 145
     5.4.1  Ideals and normal subgroups ....................... 145
     5.4.2  Solvable Lie algebras ............................. 146
     5.4.3  Levi decomposition ................................ 147
5.5  Examples of Application of Decompositions to Control ..... 147
     5.5.1  Control of two coupled spin-1/2 particles with
            Ising interaction ................................. 148
     5.5.2  Control of two coupled spin-1/2 particles with
            Heisenberg interaction ............................ 150
5.6  Notes and References ..................................... 153
5.7  Exercises ................................................ 154

6    Optimal Control of Quantum Systems ....................... 157
6.1  Formulation of the Optimal Control Problem ............... 158
     6.1.1  Optimal control problems of Mayer, Lagrange and
            Bolza ............................................. 158
     6.1.2  Optimal control problems for quantum systems ...... 160
6.2  The Necessary Conditions of Optimality ................... 162
     6.2.1  General necessary conditions of optimality ........ 162
     6.2.2  The necessary optimality conditions for quantum
            control problems .................................. 166
6.3  Example: Optimal Control of a Two Level Quantum System ... 166
6.4  Time Optimal Control of Quantum Systems .................. 169
     6.4.1  The time optimal control problem; Bounded
            control ........................................... 171
     6.4.2  Minimum time control with unbounded control;
            Riemannian symmetric spaces ....................... 175
6.5  Numerical Methods for Optimal Control of Quantum
     Systems .................................................. 182
     6.5.1  Methods using discretization ...................... 183
     6.5.2  Iterative methods ................................. 183
     6.5.3  Numerical methods for two points boundary value
            problems .......................................... 186
6.6  Notes and References ..................................... 187
6.7  Exercises ................................................ 188

7    More Tools for Quantum Control ........................... 191
7.1  Selective Population Transfer via Frequency Tuning ....... 191
7.2  Time Dependent Perturbation Theory ....................... 196
7.3  Adiabatic Control ........................................ 198
7.4  STIRAP ................................................... 201
7.5  Lyapunov Control of Quantum Systems ...................... 205
     7.5.1  Quantum control problems in terms of a Lyapunov
            function .......................................... 205
     7.5.2  Determination of the control function ............. 208
     7.5.3  Study of the asymptotic behavior of the state p ... 208
7.6  Notes and References ..................................... 214
7.7  Exercises ................................................ 215

8    Analysis of Quantum Evolutions; Entanglement,
     Entanglement Measures and Dynamics ....................... 217
8.1  Entanglement of Quantum Systems .......................... 218
     8.1.1  Basic definitions and notions ..................... 218
     8.1.2  Tests of entanglement ............................. 223
     8.1.3  Measures of entanglement and concurrence .......... 231
8.2  Dynamics of Entanglement ................................. 238
     8.2.1  The two qubits example ............................ 240
     8.2.2  The odd-even decomposition and concurrence
            dynamics .......................................... 243
     8.2.3  Recursive decomposition of dynamics in
            entangling and local parts ........................ 248
8.3  Local Equivalence of States .............................. 251
     8.3.1  General considerations on dimensions .............. 252
     8.3.2  Invariants and polynomial invariants .............. 255
     8.3.3  Some solved cases ................................. 257
8.4  Notes and References ..................................... 257
8.5  Exercises ................................................ 259

9    Applications of Quantum Control and Dynamics ............. 261
9.1  Nuclear Magnetic Resonance Experiments ................... 261
     9.1.1  Basics of NMR ..................................... 261
     9.1.2  2-Dimensional NMR ................................. 266
     9.1.3  Control problems in NMR ........................... 268
9.2  Molecular Systems Control ................................ 269
     9.2.1  Pulse shaping ..................................... 269
     9.2.2  Objectives and techniques of molecular control .... 270
9.3  Atomic Systems Control; Implementations of Quantum
     Information Processing with Ion Traps .................... 272
     9.3.1  Physical set-up of the trapped ions quantum
            information processor ............................. 273
     9.3.2  Classical Hamiltonian ............................. 274
     9.3.3  Quantum mechanical Hamiltonian .................... 275
     9.3.4  Practical implementation of different
            interaction Hamiltonians .......................... 277
     9.3.5  The control problem: Switching between
            Hamiltonians ...................................... 282
9.4  Notes and References ..................................... 282
9.5  Exercises ................................................ 283

A    Positive and Completely Positive Maps, Quantum
     Operations and Generalized Measurement Theory ............ 287
A.l  Positive and Completely Positive Maps .................... 287
A.2  Quantum Operations and Operator Sum Representation ....... 288
A.3  Generalized Measurement Theory ........................... 289

В    Lagrangian and Hamiltonian Formalism in Classical
     Electrodynamics .......................................... 291
B.l  Lagrangian Mechanics ..................................... 291
B.2  Extension of Lagrangian Mechanics to Systems with
     Infinite Degrees of Freedom .............................. 296
B.3  Lagrangian and Hamiltonian Mechanics for a System of
     Interacting Particles and Field .......................... 299

С    Cartan Semisimplicity Criterion and Calculation of the
     Levi Decomposition ....................................... 305
C.l  The Adjoint Representation ............................... 305
C.2  Cartan Semisimplicity Criterion .......................... 306
C.3  Quotient Lie Algebras .................................... 306
C.4  Calculation of the Levi Subalgebra in the Levi
     Decomposition ............................................ 307
C.5  Algorithm for the Levi Decomposition ..................... 307

D    Proof of the Controllability Test of Theorem 3.2.1 ....... 309

E    The Baker-Campbell-Hausdorff Formula and Some
     Exponential Formulas ..................................... 315

F    Proof of Theorem 6.2.1 ................................... 317

References .................................................... 321
Index ......................................................... 337


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:26:42 2019. Размер: 18,001 bytes.
Посещение N 1636 c 12.08.2014