Dissertationes mathematicae; 499: A colored sl(N) homology for links in S3 (Warszawa, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDissertationes mathematicae. 499: A colored sl(N) homology for links in S3 / H.Wu; Institute of Mathematics, Polish Academy of Sciences. - Warszawa: Instytut matematyczny PAN, 2014. - 217, iii p. – Ref.: p.213-215. – Пер. заг.: Раскрашенная гомология для зацеплений на S. - ISSN 0012-3862
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
1  Introduction	................................................. 6
   1.1  Background .............................................. 6
   1.2  Some conventions ........................................ 6
   1.3  The colored sl(N) link homology ......................... 6
   1.4  Deformations and applications ........................... 8
   1.5  Other approaches to the colored sl(N) link homology ..... 8
   1.6  Outline of the proof .................................... 9
2  The MOY calculus ............................................ 11
   2.1  The HOMFLYPT polynomial ................................ 11
   2.2  MOY graphs ............................................. 11
   2.3  The MOY graph polynomial ............................... 12
   2.4  The MOY calculus ....................................... 13
   2.5  The colored Reshetikhin-Turaev sl(N) polynomial ........ 16
3  Graded matrix factorizations ................................ 17
   3.1  fig.4-pregraded and fig.4-graded linear spaces ................. 17
   3.2  Graded modules over a graded fig.5-algebra ................. 18
   3.3  Graded matrix factorizations ........................... 19
   3.4  Morphisms of graded matrix factorizations .............. 21
   3.5  Elementary operations on Koszul matrix factorizations .. 25
   3.6  Categories of homotopically finite graded matrix
        factorizations ......................................... 32
   3.7  Categories of chain complexes .......................... 34
4  Graded matrix factorizations over a polynomial ring ......... 36
   4.1  Homogeneous basis ...................................... 36
   4.2  Homology of graded matrix factorizations over R	........ 37
   4.3  The Krull-Schmidt property ............................. 41
   4.4  Yonezawa's lemma ....................................... 43
5  Symmetric polynomials ....................................... 46
   5.1  Notations and basic examples ........................... 46
   5.2  Partitions and linear bases for the space of
        symmetric polynomials .................................. 48
   5.3  Partially symmetric polynomials	........................ 50
   5.4  The cohomology ring of a complex Grassmannian .......... 51
6  Matrix factorizations associated to MOY graphs .............. 52
   6.1  Markings of MOY graphs ................................. 52
   6.2  The matrix factorization associated to a MOY graph ..... 52
   6.3  Direct sum decomposition (II) .......................... 57
   6.4  Direct sum decomposition (I) ........................... 58
7  Circles ..................................................... 61
   7.1  Homotopy type .......................................... 61
   7.2  Module structure of the homology ....................... 62
   7.3  Cycles representing the generating class ............... 66
8  Morphisms induced by local changes of MOY graphs ............ 70
   8.1  A strategy in defining and comparing morphisms ......... 70
   8.2  Bouquet move ........................................... 72
   8.3  Circle creation and annihilation ....................... 73
   8.4  Edge splitting and merging ............................. 74
   8.5  Adjoint Koszul matrix factorizations ................... 76
   8.6  General x-morphisms .................................... 82
   8.7  Adding and removing a loop ............................. 93
   8.8  Saddle move ............................................ 95
   8.9  The first composition formula .......................... 96
   8.10 The second composition formula ........................ 100
9  Direct sum decomposition (III) ............................. 111
   9.1  Relating Г and Г0 ..................................... 111
   9.2  Relating Г and Г1 ..................................... 117
   9.3  Proof of Theorem 9.1 .................................. 120
10 Direct sum decomposition (IV) .............................. 126
   10.1 Relating Г and Го ..................................... 127
   10.2 Relating Г and Ti ..................................... 130
   10.3 Homotopic nilpotency fig.6 ........... 133
   10.4 Graded dimensions of С(Г), С(Г0) and C(Г1) ............ 136
   10.5 Proof of Theorem 10.1 ................................. 142
11 Direct sum decomposition (V) ............................... 144
   11.1 The proof ............................................. 144
12 Chain complexes associated to knotted MOY graphs ........... 149
   12.1 Change of base ring ................................... 151
   12.2 Computing HomHMF(C(Гk2),*) ............................. 153
   12.3 The chain complex associated to a colored crossing .... 157
   12.4 A null homotopic chain complex ........................ 161
   12.5 Explicit forms of the differential maps ............... 164
   12.6 The graded Euler characteristic and the fig.42-grading .... 170
13 1nvariance under fork sliding .............................. 172
   13.1 Notations used in the proof ........................... 174
   13.2 Commutativity lemmas .................................. 176
   13.3 Another look at decomposition (IV) .................... 180
   13.4 Relating the differential maps C± and Ĉ(D1,1±) ......... 185
   13.5 Relating the differential maps of Ĉ(D1,0±) and 
   Ĉ(D1,1±) .................................................... 187
   13.6 Decomposing С(Гm,1) = С(Г'm) ........................... 191
   13.7 Proof of Proposition 13.2 ............................. 196
14 Invariance under Reidemeister moves ........................ 206
   14.1 Invariance under Reidemeister moves IIα, IIb and III ... 207
   14.2 Invariance under Reidemeister move I .................. 208

References .................................................... 213

Two index charts .............................................. 216


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:26:40 2019. Размер: 10,187 bytes.
Посещение N 821 c 05.08.2014