Vedmedenko E.Y. Competing interactions and patterns in nanoworld (Weinheim, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаVedmedenko E.Y. Competing interactions and patterns in nanoworld. - Weinheim: Wiley-VCH, 2007. - xi, 203 p.: ill. - Пер. загл.: Конкурирующие взаимодействия и структурообразование в наномире. - ISBN 978-3-527-40484-1
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ IX

1    Introduction ............................................... 1
1.1  How the Story Began ........................................ 1
     1.1.1  Structure Periodicity and Modulated Phases .......... 2
     1.1.2  Ferromagnetic and Ferroelectric Domains ............. 5
1.2  First Theoretical Approaches for Competing Interactions .... 7
     1.2.1  Frenkel-Kontorova Model ............................. 7
     1.2.2  Theoretical Models of the Magnetic/Ferroelectric
            Domains ............................................ 11
            1.2.2.1  Phenomenology of the Dipolar Interaction .. 12
            1.2.2.2  Phenomenology of the Exchange and
                     Exchange-Like Interactions ................ 13
            1.2.2.3  Mechanism of the Domain Formation ......... 14
1.3  Summary ................................................... 15
1.4  Exercises 16 References ................................... 17

2    Self-Competition: or How to Choose the Best from the
     Worst ..................................................... 21
2.1  Frustration: The World is not Perfect ..................... 21
2.2  Why is an Understanding of Frustration Phenomena
     Important for Nanosystems? ................................ 22
2.3  Ising, XY, and Heisenberg Statistical Models .............. 23
2.4  Order-Disorder Phenomena .................................. 25
     2.4.1  Phase Transitions and their Characterization ....... 26
     2.4.2  Order Below a Critical Temperature ................. 28
     2.4.3  Measure of Frustration: Local Energy Parameter ..... 28
2.5  Self-Competition of the Short-Range Interactions .......... 29
     2.5.1  Ising Antiferromagnet on a Lattice ................. 30
            2.5.1.1  Triangular Lattice ........................ 30
            2.5.1.2  Kagome Lattice ............................ 31
            2.5.1.3  Ising Antiferromagnet on Aperiodic
                     Tilings ................................... 32
     2.5.2  Heisenberg Antiferromagnet on a Lattice ............ 36
            2.5.2.1  Triangular and Kagome Lattices ............ 36
            2.5.2.2  Aperiodic Tilings ......................... 38
     2.5.3  Three-Dimensional Spin Structure on a Periodic
            Two-Dimensional Lattice: Itinerant Systems ......... 42
     2.5.4  Frustration Squeezed Out ........................... 44
2.6  Self-Competition of the Long-Range Interactions ........... 45
     2.6.1  Dipolar Interactions ............................... 46
            2.6.1.1  Localized Ising Moments on a Periodic
                     Lattice ................................... 46
            2.6.1.2  Localized Vector Moments on a Periodic
                     Lattice ................................... 48
            2.6.1.3  Localized Vector Moments on Aperiodic
                     Tilings ................................... 51
            2.6.1.4  Delocalized Moments with Given
                     Orientation: Two-Dimensional Electron
                     Wigner Crystal ............................ 53
     2.6.2  Multipolar Interactions: Why Might that be
            Interesting? ....................................... 56
            2.6.2.1  Multipolar Moments of Molecular Systems
                     and Bose-Einstein Condensates ............. 58
            2.6.2.2  Multipolar Moments of Nanomagnetic
                     Particles ................................. 60
            2.6.2.3  Multipole-Multipole Interactions .......... 64
            2.6.2.4  Ground States for Multipoles of Even
                     Symmetry: Quadrupolar and Hexadecapolar
                     Patterns .................................. 64
            2.6.2.5  Ground States for Multipoles of Odd
                     Symmetry: Octopolar and Dotriacontapolar
                     Patterns .................................. 67
     2.7  Summary .............................................. 68
     2.8  Exercises ............................................ 68
     References ................................................ 70

3    Competition Between a Short- and a Long-Range
     Interaction ............................................... 74
3.1  Localized Particles
     3.1.1  Competition Between the Ferromagnetic Exchange
            and the Dipolar Interaction: Ising Spins ........... 74
            3.1.1.1  Stripes or Checkerboard? .................. 74
            3.1.1.2  Scaling Theory ............................ 76
            3.1.1.3  Stripes in an External Magnetic Field:
                     Bubbles ................................... 77
     3.1.2  Competition Between the Ferromagnetic Exchange
            and the Dipolar Interaction: Vector Spins .......... 78
            3.1.2.1  Films: Dominating Exchange Interaction .... 78
            3.1.2.2  Films: Dominating Dipolar Interaction ..... 80
            3.1.2.3  Nanoparticles with Periodic Atomic
                     Structure ................................. 82
            3.1.2.4  Nanoparticles with Aperiodic Atomic
                     Structure ................................. 86
     3.1.3  Competition Between the Antiferromagnetic
            Exchange and the Dipolar Interaction ............... 88
            3.1.3.1  Periodic Lattices ......................... 88
            3.1.3.2  Aperiodic Lattices 91
     3.1.4  Neural Networks .................................... 92
3.2  Delocalized Particles ..................................... 94
     3.2.1  Self-Assembled Domain Structures on a Solid
            Surface: Dipolar Lattice Gas Model ................. 94
     3.2.2  Self-Organization in Langmuir Monolayers ........... 98
     3.2.3  Self-Organization in Block Copolymer Systems ...... 101
     3.2.4  Self-Organization in Colloidal Systems ............ 103
            3.2.4.1  Planar Colloidal Crystals ................ 103
            3.2.4.2  Patterns in Ferrofluids .................. 104
            3.2.4.3  Systems of Magnetic Holes ................ 107
     3.2.5  Two-Dimensional Electron Systems .................. 108
     3.2.6  Patterns in Animal Colors ......................... 108
3.3  Exercises ................................................ 111
     References ............................................... 113

4    Competition Between Interactions on a Similar Length
     Scale .................................................... 115
4.1  Two Short- or Mid-Range Interactions
     4.1.1  Super-Exchange and Indirect Exchange
            Interactions ...................................... 115
     4.1.2  Spin Glass ........................................ 117
     4.1.3  Non-Collinear Magnetism at Surfaces ............... 119
            4.1.3.1  Competing Heisenberg Exchange
                     Interactions (Hexagonal Lattice) ......... 119
            4.1.3.2  Competing Heisenberg Exchange Couplings
                     (Square Lattice) ......................... 124
            4.1.3.3  Antiferromagnetic Domain Wall as a Spin
                     Spiral ................................... 125
            4.1.3.4  Spin Spiral State in the Presence of
                     Dipolar Interactions ..................... 131
     4.1.4  Two Short-Range Repulsive Interactions ............ 133
4.2  Two Long-Range Interactions .............................. 135
     4.2.1  Systems with Dipolar and Quadrapolar
            Interactions ...................................... 135
     4.2.2  Systems with Dipolar and Octopolar Interactions ... 136
            4.2.2.1  Combined Multipoles in Nanomagnetic
                     Arrays ................................... 136
            4.2.2.2  Magnetization Reversal in Nanomagnetic
                     Arrays ................................... 139
4.3  Summary .................................................. 141
4.4  Exercises ................................................ 141
     References ............................................... 144

5    Interplay Between Anisotropics and Interparticle
     Interactions ............................................. 145
5.1  Interplay Between the Structural Anisotropy and the
     Short-Range Repulsion/Attraction: Liquid Crystals ........ 145
     5.1.1  Liquid Crystal Phases ............................. 147
     5.1.2  Liquid Crystal Patterns: Textures and
            Disclinations ..................................... 148
     5.1.3  The Lattice Model of Liquid Crystals .............. 153
5.2  Competition Between the Spin-Orbit Coupling and the
     Long-Range Dipolar Energy: Ultrathin Magnetic Films ...... 154
     5.2.1  Shape Anisotropy from Dipolar Interactions ........ 355
     5.2.2  Perpendicular Magnetic Anisotropy ................. 157
     5.2.3  Anisotropy Phase Diagram .......................... 157
     5.2.4  Magnetic Structure of the Spin Reorientation
            Transition (SRT) .................................. 159
            5.2.4.1  Regimes of Vertical and Planar
                     Magnetization ............................ 159
            5.2.4.2  SRT via the Twisted Phase ................ 360
            5.2.4.3  SRT via the State of Canted
                     Magnetization ............................ 161
            5.2.4.4  SRT via the State of Coexisting Phases ... 164
5.3  Magnetic Nanoplatelets ................................... 267
     5.3.1  Size-Dependence of Shape Anisotropy in Discrete
            Atomic Approximation .............................. 167
     5.3.2  Multiplicative Separation of Discrete and
            Continuum Contributions ........................... 169
     5.3.3  Size-Dependent Spin Reorientation Transition ...... 169
     5.3.4  Size-Dependence of Crystallographic Anisotropy .... 171
5.4  Summary .................................................. 172
5.5  Exercises ................................................ 172
References .................................................... 175

6    Dynamic Self-Organization ................................ 177
6.1  Diffusion-Limited Aggregation ............................ 177
     6.1.1  Computer Model .................................... 179
     6.1.2  Diffusion-Limited Aggregation Altered by
            Interactions ...................................... 182
6.2  Dynamic Wave Patterns .................................... 184
     6.2.1  Pattern Dynamics of Spin Waves .................... 186
     6.2.2  Liquid Crystals in a Rotating Magnetic Field ...... 189
     6.2.3  Standing Waves in Two-Dimensional Electron Gas:
            Quantum Mirages ................................... 192
6.3  Summary .................................................. 196
     References ............................................... 196

Subject Index ................................................. 199


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:26:36 2019. Размер: 14,822 bytes.
Посещение N 958 c 29.07.2014