Cebeci T. Analysis of turbulent flows with computer programs (Oxford; Waltham, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаCebeci T. Analysis of turbulent flows with computer programs. - 3rd ed. - Oxford; Waltham: Elsevier/Butterworth-Heinemann, 2013. - xiii, 450 p.: ill. - Incl. bibl. ref. - Ind.: p.447-450. - Пер. загл.: Анализ турбулентных потоков с помощью компьютерных программ. - ISBN 978-0-08-098335-6
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface to the Third Edition ................................... xi
1  Introduction ................................................. 1
   1.1  Introductory Remarks .................................... 1
   1.2  Turbulence - Miscellaneous Remarks ...................... 3
   1.3  The Ubiquity of Turbulence .............................. 7
   1.4  The Continuum Hypothesis ................................ 8
   1.5  Measures of Turbulence - Intensity ..................... 11
   1.6  Measures of Turbulence - Scale ......................... 14
   1.7  Measures of Turbulence - The Energy Spectrum ........... 19
   1.8  Measures of Turbulence - Intermittency ................. 22
   1.9  The Diffusive Nature of Turbulence ..................... 23
   1.10 Turbulence Simulation .................................. 26
   References .................................................. 31
2  Conservation Equations for Compressible Turbulent Flows ..... 33
   2.1  Introduction ........................................... 33
   2.2  The Navier-Stokes Equations ............................ 34
   2.3  Conventional Time-Averaging and Mass-Weighted-
        Averaging Procedures ................................... 35
   2.4  Relation Between Conventional Time-Averaged
        Quantities and Mass-Weighted-Averaged Quantities ....... 39
   2.5  Continuity and Momentum Equations ...................... 41
   2.6  Energy Equations ....................................... 41
   2.7  Mean-Kinetic-Energy Equation ........................... 42
   2.8  Reynolds-Stress Transport Equations .................... 44
   2.9  Reduced Forms of the Navier-Stokes Equations ........... 48
   References .................................................. 51
3  Boundary-Layer Equations .................................... 53
   3.1  Introduction ........................................... 54
   3.2  Boundary-Layer Approximations for Compressible Flows ... 54
        3.2.1  Laminar Flows ................................... 55
        3.2.2  Turbulent Flows ................................. 59
   3.3  Continuity, Momentum, and Energy Equations ............. 64
        3.3.1 Two-Dimensional Flows ............................ 64
        3.3.2  Axisymmetric Flows .............................. 69
        3.3.3  Three-Dimensional Flows ......................... 71
   3.4  Mean-Kinetic-Energy Flows .............................. 73
   3.5  Reynolds-Stress Transport Equations .................... 74
   3.6  Integral Equations of the Boundary Layer ............... 78
        3.6.1  Momentum Integral Equation ...................... 79
        3.6.2  Mean Energy Integral Equation ................... 80
        3.6.3  Turbulent Energy Integral Equation .............. 81
        3.6.4  Energy Integral Equation ........................ 82
   References .................................................. 87
4  General Behavior of Turbulent Boundary Layers ............... 89
   4.1  Introduction ........................................... 90
   4.2  Composite Nature of a Turbulent Boundary Layer ......... 90
   4.3  Eddy-Viscosity, Mixing-Length, Eddy-Conductivity and
        Turbulent Prandtl Number Concepts ...................... 99
   4.4  Mean-Velocity and Temperature Distributions in
        Incompressible Flows on Smooth Surfaces ............... 104
        4.4.1  Viscous and Conductive Sublayers ............... 107
        4.4.2  Fully Turbulent Part of the Inner Region ....... 108
        4.4.3  Inner Region ................................... 109
        4.4.4  Outer Region ................................... 112
        4.4.5  Equilibrium Boundary Layers .................... 116
        4.4.6  Velocity and Temperature Distributions for
               the Whole Layer Velocity Profile ............... 117
   4.5  Mean-Velocity Distributions in Incompressible
        Turbulent Flows on Rough Surfaces with Zero Pressure
        Gradient .............................................. 123
   4.6  Mean-Velocity Distribution on Smooth Porous Surfaces
        with Zero Pressure Gradient ........................... 129
   4.7  The Crocco Integral for Turbulent Boundary Layers ..... 131
   4.8  Mean-Velocity and Temperature Distributions in
        Compressible Flows with Zero Pressure Gradient ........ 135
        4.8.1  The Law-of-the-Wall for Compressible Flows ..... 135
        4.8.2  Van Driest Transformation for the Law of the
               Wall ........................................... 139
        4.8.3  Transformations for Compressible Turbulent
               Flows .......................................... 140
        4.8.4  Law of the Wall for Compressible Flow with
               Mass Transfer .................................. 143
   4.9  Effect of Pressure Gradient on Mean-Velocity and
        Temperature Distributions in Incompressible and
        Compressible Flows .................................... 145
   References ................................................. 150
5  Algebraic Turbulence Models ................................ 155
   5.1  Introduction .......................................... 156
   5.2  Eddy Viscosity and Mixing Length Models ............... 156
   5.3  CS Model .............................................. 160
        5.3.1  Effect of Low Reynolds Number .................. 161
        5.3.2  Effect of Transverse Curvature ................. 165
        5.3.3  Effect of Streamwise Wall Curvature ............ 166
        5.3.4  The Effect of Natural Transition ............... 168
        5.3.5  Effect of Roughness ............................ 172
   5.4  Extension of the CS Model to Strong Pressure-
        Gradient Flows ........................................ 175
        5.4.1  Johnson-King Approach .......................... 175
        5.4.2  Cebeci-Chang Approach .......................... 178
   5.5  Extensions of the CS Model to Navier-Stokes Methods ... 181
   5.6  Eddy Conductivity and Turbulent Prandtl Number
        Models ................................................ 185
   5.7  CS Model for Three-Dimensional Flows .................. 194
        5.7.1  Infinite Swept Wing Flows ...................... 196
        5.7.2  Full Three-Dimensional Flows ................... 199
   5.8  Summary ............................................... 203
   References ................................................. 205
6  Transport-Equation Turbulence Models ....................... 211
   6.1  Introduction .......................................... 211
   6.2  Two-Equation Models ................................... 215
        6.2.1  k-fig.1 Model ...................................... 215
        6.2.2  k-to Model ..................................... 221
        6.2.3  SST Model ...................................... 224
   6.3  One-Equation Models ................................... 226
        6.3.1  Bradshaw's Model ............................... 227
        6.3.2  Spalart-Allmaras Model ......................... 228
   6.4  Stress-Transport Models ............................... 230
   References ................................................. 235
7  Short Cut Methods .......................................... 237
   7.1  Introduction .......................................... 238
   7.2  Flows with Zero-Pressure Gradient ..................... 238
        7.2.1  Incompressible Flow on a Smooth Flat Plate ..... 239
        7.2.2  Incompressible Flow on a Rough Flat Plate ...... 248
        7.2.3  Compressible Flow on a Smooth Flat Plate ....... 250
        7.2.4  Compressible Flow on a Rough Flat Plate ........ 256
   7.3  Flows with Pressure Gradient: Integral Methods ........ 257
   7.4  Prediction of Flow Separation in Incompressible Flows . 264
   7.5  Free Shear Flows ...................................... 268
        7.5.1  Two-Dimensional Turbulent Jet .................. 268
        7.5.2  Turbulent Mixing Layer Between Two Uniform
               Streams at Different Temperatures .............. 273
        7.5.3  Power Laws for the Width and the Centerline
               Velocity of Similar Free Shear Layers .......... 280
   Appendix 7A Gamma, Beta and Incomplete Beta Functions ...... 281
   References ................................................. 291
8  Differential Methods with Algebraic Turbulence Models ...... 293
   8.1  Introduction .......................................... 294
   8.2  Numerical Solution of the Boundary-Layer Equations
        with Algebraic Turbulence Models ...................... 295
        8.2.1  Numerical Formulation .......................... 297
        8.2.2  Newton's Method ................................ 299
        8.2.3  Block-Elimination Method ....................... 301
        8.2.4  Subroutine SOLV3 ............................... 302
   8.3  Prediction of Two-Dimensional Incompressible Flows .... 305
        8.3.1  Impermeable Surface with Zero Pressure
               Gradient ....................................... 305
        8.3.2  Permeable Surface with Zero Pressure Gradient .. 307
        8.3.3  Impermeable Surface with Pressure Gradient ..... 310
        8.3.4  Permeable Surface with Pressure Gradient ....... 312
   8.4  Axisymmetric Incompressible Flows ..................... 315
   8.5  Two-Dimensional Compressible Flows .................... 317
        8.5.1  Impermeable Surface with Zero Pressure
               Gradient ....................................... 317
        8.5.2  Permeable Surface with Zero Pressure Gradient .. 320
        8.5.3  Impermeable Surface with Pressure Gradient ..... 320
   8.6  Axisymmetric Compressible Flows ....................... 322
   8.7  Prediction of Two-Dimensional Incompressible Flows
        with Separation ....................................... 322
        8.7.1 Interaction Problem ............................. 324
   8.8  Numerical Solution of the Boundary-Layer Equations
        in the Inverse Mode with Algebraic Turbulence Models .. 326
        8.8.1 Numerical Formulation ........................... 328
   8.9  Hess-Smith (HS) Panel Method .......................... 333
        8.9.1  Viscous Effects ................................ 340
        8.9.2  Flowfield Calculation in the Wake .............. 342
   8.10 Results for Airfoil Flows ............................. 344
   8.11 Prediction of Three-Dimensional Flows with Separation . 347
   References ................................................. 354
9  Differential Methods with Transport-Equation Turbulence
   Models ..................................................... 357
   9.1  Introduction .......................................... 358
   9.2  Zonal Method for k-fig.1 Model ............................ 358
        9.2.1  Turbulence Equations and Boundary Conditions ... 359
        9.2.2  Solution Procedure ............................. 360
   9.3  Solution of the k-fig.1 Model Equations with
        and without Wall Functions ............................ 371
        9.3.1  Solution of the k-fig.1 Model Equations without
               Wall Functions ................................. 371
        9.3.2  Solution of the k-fig.1 Model Equations with Wall
               Functions ...................................... 374
   9.4  Solution of the k-w and SST Model Equations ........... 375
   9.5  Evaluation of Four Turbulence Models .................. 378
        9.5.1  Free-Shear Flows ............................... 379
        9.5.2  Attached and Separated Turbulent Boundary
               Layers ......................................... 384
        9.5.3  Summary ........................................ 389
   9A. Appendix: Coefficients of the Linearized Finite-
       Difference Equations for the k-fig.1 Model ................. 392
   References ................................................. 407
10 Companion Computer Programs ................................ 409
   10.1 Introduction .......................................... 411
   10.2 Integral Methods ...................................... 412
        10.2.1 Thwaites' Method ............................... 412
        10.2.2 Smith-Spalding Method .......................... 412
        10.2.3 Head's Method .................................. 412
        10.2.4 Ambrok's Method ................................ 413
   10.3 Differential Method with CS Model: Two-Dimensional
        Laminar and Turbulent Flows ........................... 413
        10.3.1 Main ........................................... 413
        10.3.2 Subroutine INPUT ............................... 414
        10.3.3 Subroutine IVPL ................................ 416
        10.3.4 Subroutine GROWTH .............................. 417
        10.3.5 Subroutine COEF3 ............................... 417
        10.3.6 Subroutine EDDY ................................ 417
        10.3.7 Subroutine SOLV3 ............................... 418
        10.3.8 Subroutine OUTPUT .............................. 418
   10.4 Hess-Smith Panel with Viscous Effects ................. 418
        10.4.1 Main ........................................... 418
        10.4.2 Subroutine COEF ................................ 419
        10.4.3 Subroutine OBKUTA .............................. 419
        10.4.4 Subroutine GAUSS ............................... 419
        10.4.5 Subroutine VPDIS ............................... 419
        10.4.6 Subroutine CLCM ................................ 420
        10.4.7 Subroutine VPDWK ............................... 420
   10.5 Differential Method with CS Model: Two-Dimensional
        Flows with Heat Transfer .............................. 420
   10.6 Differential Method with CS Model: Infinite Swept-
        Wing Flows ............................................ 421
   10.7 Differential Method with CS and k-fig.1 Models:
        Components of the Computer Program Common to both
        Models ................................................ 421
        10.7.1 MAIN ........................................... 421
        10.7.2 Subroutine INPUT ............................... 422
        10.7.3 Subroutine IVPT ................................ 423
        10.7.4 Subroutine GROWTH .............................. 423
        10.7.5 Subroutine GRID ................................ 423
        10.7.6 Subroutine OUTPUT .............................. 423
   10.8 Differential Method with CS and k-fig.1 Models: CS Model .. 424
        10.8.1 Subroutine COEFTR .............................. 424
        10.8.2 Subroutine SOLV3 ............................... 424
        10.8.3 Subroutines EDDY, GAMCAL, CALFA ................ 424
   10.9 Differential Method with CS and k-fig.1 Models: k-fig.1
        Model ................................................. 425
        10.9.1 Subroutines KECOEF, KEPARM, KEDEF and KEDAMP ... 425
        10.9.2 Subroutine KEINITK ............................. 427
        10.9.3 Subroutine KEINITG ............................. 428
        10.9.4 Subroutine KEWALL .............................. 428
        10.9.5 Subroutine KESOLV .............................. 428
        10.9.6 Test Cases for the CS and k-fig.1 Models ........... 429
        10.9.7 Solution Algorithm ............................. 429
   10.10 Differential Method with CS and k-fig.1 Models: Basic
        Tools ................................................. 431
   10.11 Differential Method with SA Model .................... 431
   10.12 Differential Method for a Plane Jet .................. 432
   10.13 Useful Subroutines ................................... 432
        10.13.1 Subroutine IVPT ............................... 432
        10.13.2 Subroutine SOLV2 .............................. 432
   10.14 Differential Method for Inverse Boundary-Layer Flows
        with CS Model ......................................... 432
        10.14.1 Subroutine INPUT .............................. 433
        10.14.2 Subroutine HIC ................................ 434
   10.15 Comparison Computer Programs ......................... 435
        10.15.1 Sample Calculations for the Panel Method
                without Viscous Effects ....................... 435
        10.15.2 Sample Calculations for the Inverse
                Boundary-Layer Program ........................ 438
        10.15.3 Sample Calculations with the Interactive
                Boundary-Layer program ........................ 439
   References ................................................. 446
Index ......................................................... 447




Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:26:32 2019. Размер: 21,024 bytes.
Посещение N 1642 c 29.07.2014