Goedbloed J.P. Principles of magnetohydrodynamics: with applications to laboratory and astrophysical plasmas (Cambridge; New York, 2004). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGoedbloed J.P. Principles of magnetohydrodynamics: with applications to laboratory and astrophysical plasmas / J.P.(Hans) Goedbloed, S.Poedts. - Cambridge; New York: Cambridge University Press, 2004. - xvi, 613 p.: ill. - Ref.: p.594-605. - Ind.: p.606-613. - ISBN 0-521-62607-2
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ...................................................... xiii

Part I  Plasma physics preliminaries ............................ 1
1  Introduction ................................................. 3
   1.1  Motivation .............................................. 3
   1.2  Thermonuclear fusion and plasma confinement ............. 4
        1.2.1  Fusion reactions ................................. 4
        1.2.2  Conditions for fusion ............................ 6
        1.2.3  Magnetic confinement and tokamaks ............... 10
   1.3  Astrophysical plasmas .................................. 13
        1.3.1  Celestial mechanics ............................. 13
        1.3.2  Astrophysics .................................... 15
        1.3.3  Plasmas enter the stage ......................... 18
        1.3.4  The standard view of nature ..................... 21
   1.4  Definitions of the plasma state ........................ 23
        1.4.1  Microscopic definition of plasma ................ 23
        1.4.2  Macroscopic approach to plasma .................. 27
   1.5  Literature and exercises ............................... 29
2  Elements of plasma physics .................................. 34
   2.1  Theoretical models ..................................... 34
   2.2  Single particle motion ................................. 34
        2.2.1  Cyclotron motion ................................ 34
        2.2.2  Excursion: basic equations of electrodynamics
               and mechanics ................................... 38
        2.2.3  Drifts, adiabatic invariants .................... 41
   2.3  Kinetic plasma theory .................................. 47
        2.3.1  Boltzmann equation and moment reduction ......... 48
        2.3.2  Collective phenomena: plasma oscillations ....... 54
        2.3.3  Landau damping .................................. 58
   2.4  Fluid description ...................................... 65
        2.4.1  From the two-fluid to the MHD description of
               plasmas ......................................... 67
        2.4.2  Alfven waves .................................... 71
        2.4.3  Equilibrium and stability ....................... 74
   2.5  In conclusion .......................................... 79
   2.6  Literature and exercises ............................... 80
3  'Derivation' of the macroscopic equations ................... 83
   3.1  Two approaches ......................................... 83
   3.2  Kinetic equations ...................................... 84
        3.2.1  Boltzmann equation .............................. 84
        3.2.2  Moments of the Boltzmann equation ............... 88
        3.2.3  Thermal fluctuations and transport .............. 90
        3.2.4  Collisions and closure .......................... 94
   3.3  Two-fluid equations .................................... 98
        3.3.1  Electron-ion plasma ............................. 98
        3.3.2  The classical transport coefficients ............ 99
        3.3.3  Dissipative versus ideal fluids ................ 104
        3.3.4  Excursion: waves in two-fluid plasmas .......... 108
   3.4  One-fluid equations ................................... 119
        3.4.1  Maximal ordering for MHD ....................... 119
        3.4.2  Resistive and ideal MHD equations .............. 124
   3.5  Literature and exercises .............................. 126

Part II  Basic magnetohydrodynamics ........................... 129
4  The  MHD model ............................................. 131
   4.1  The ideal MHD equations ............................... 131
        4.1.1  Postulating the basic equations ................ 131
        4.1.2  Scale independence ............................. 138
        4.1.3  A crucial question ............................. 139
   4.2  Magnetic flux ......................................... 140
        4.2.1  Flux tubes ..................................... 140
        4.2.2  Global magnetic flux conservation .............. 142
   4.3  Conservation laws ..................................... 145
        4.3.1  Conservation form of the MHD equations ......... 145
        4.3.2  Global conservation laws ....................... 148
        4.3.3  Local conservation laws - conservation of
               magnetic flux .................................. 152
        4.3.4  Magnetic helicity .............................. 155
   4.4  Dissipative magnetohydrodynamics ...................... 161
        4.4.1  Resistive MHD .................................. 161
        4.4.2  (Non-)conservation form of the dissipative
               equations ...................................... 165
   4.5  Discontinuities ....................................... 167
        4.5.1  Shocks and jump conditions ..................... 167
        4.5.2  Boundary conditions for plasmas with an
               interface ...................................... 171
   4.6  Model problems ........................................ 173
        4.6.1  Laboratory plasmas (models I—III) .............. 174
        4.6.2  Energy conservation for interface plasmas ...... 178
        4.6.3  Astrophysical plasmas (models IV-VI) ........... 180
   4.7  Literature and exercises .............................. 182
5  Waves and characteristics .................................. 186
   5.1  Physics and accounting ................................ 186
        5.1.1  Introduction ................................... 186
        5.1.2  Soundwaves ..................................... 186
   5.2  MHD waves ............................................. 190
        5.2.1  Symmetric representation in primitive
               variables ...................................... 190
        5.2.2  Entropy wave and magnetic field constraint ..... 194
        5.2.3  Reduction to velocity representation: three
               waves .......................................... 198
        5.2.4  Dispersion diagrams ............................ 202
   5.3  Phase and group diagrams .............................. 205
        5.3.1  Basic concepts ................................. 205
        5.3.2  Application to the MHD waves ................... 207
        5.3.3  Asymptotic properties .......................... 212
   5.4  Characteristics ....................................... 213
        5.4.1  The method of characteristics .................. 213
        5.4.2  Classification of partial differential
               equations ...................................... 216
        5.4.3  Characteristics in ideal MHD ................... 219
   5.5  Literature and exercises .............................. 227
6  Spectral theory ............................................ 230
   6.1  Stability: intuitive approach ......................... 230
        6.1.1  Two viewpoints ................................. 230
        6.1.2  Linearization and Lagrangian reduction ......... 233
   6.2  Force operator formalism .............................. 237
        6.2.1  Equation of motion ............................. 237
        6.2.2  Hilbert space .................................. 242
        6.2.3  Proof of self-adjointness of the force
               operator ....................................... 244
   6.3  Spectral alternatives ................................. 250
        6.3.1  Mathematical intermezzo ........................ 250
        6.3.2  Initial value problem in MHD ................... 253
   6.4  Quadratic forms and variational principles ............ 256
        6.4.1  Expressions for the potential energy ........... 256
        6.4.2  Hamilton's principle ........................... 259
        6.4.3  Rayleigh-Ritz spectral variational principle ... 259
        6.4.4  Energy principle ............................... 261
   6.5  Further spectral issues ............................... 263
        6.5.1  Normal modes and the energy principle .......... 263
        6.5.2  Proof of the energy principle .................. 266
        6.5.3  or-stability ................................... 268
        6.5.4  Returning to the two viewpoints ................ 271
   6.6  Extension to interface plasmas ........................ 274
        6.6.1  Boundary conditions at the interface ........... 276
        6.6.2  Self-adjointness for interface plasmas ......... 280
        6.6.3  Extended variational principles ................ 283
        6.6.4  Application to the Rayleigh-Taylor
               instability .................................... 287
   6.7  Literature and exercises .............................. 296
7  Waves and instabilities of inhomogeneous plasmas ........... 300
   7.1  Hydrodynamics of the solar interior ................... 300
        7.1.1  Radiative equilibrium model .................... 301
        7.1.2  Convection zone ................................ 305
   7.2  Hydrodynamic waves and instabilities of
        a gravitating slab .................................... 308
        7.2.1  Hydrodynamic wave equation ..................... 309
        7.2.2  Convective instabilities ....................... 312
        7.2.3  Gravito-acoustic waves ......................... 313
        7.2.4  Helioseismology and MHD spectroscopy ........... 317
   7.3  MHD wave equation for a gravitating magnetized
        plasma slab ........................................... 322
        7.3.1  Preliminaries .................................. 322
        7.3.2  Derivation of the MHD wave equation for
               a gravitating slab ............................. 327
        7.3.3  Gravito-MHD waves .............................. 335
   7.4  Continuous spectrum and spectral structure ............ 345
        7.4.1  Singular differential equations ................ 345
        7.4.2  Alfven and slow continua ....................... 351
        7.4.3  Oscillation theorems ........................... 357
        7.4.4  Cluster spectra ................................ 363
   7.5  Gravitational instabilities of plasmas with magnetic
        shear ................................................. 365
        7.5.1  Energy principle for a gravitating plasma
               slab ........................................... 366
        7.5.2  Interchange instabilities in sheared magnetic
               fields ......................................... 371
        7.5.3  Interchanges in the absence of magnetic
               shear .......................................... 376
   7.6  Literature and exercises .............................. 379
8  Magnetic structures and dynamics ........................... 384
   8.1  Plasma dynamics in laboratory and nature .............. 384
   8.2  Solar magnetism ....................................... 385
        8.2.1  The solar cycle ................................ 387
        8.2.2  Magnetic structures in the solar atmosphere .... 395
   8.3  Planetary magnetic fields ............................. 407
        8.3.1  The geomagnetic dynamo ......................... 409
        8.3.2  Magnetic fields of the other planets ........... 413
   8.4  Magnetospheric plasmas ................................ 415
        8.4.1  The solar wind and the heliosphere ............. 415
        8.4.2  Solar wind and planetary magnetospheres ........ 419
   8.5  Perspective ........................................... 426
   8.6  Literature and exercises .............................. 427
9  Cylindrical plasmas ........................................ 431
   9.1  Equilibrium of cylindrical plasmas .................... 431
        9.1.1  Diffuse plasmas ................................ 431
        9.1.2  Interface plasmas .............................. 436
   9.2  MHD wave equation for cylindrical plasmas ............. 438
        9.2.1  Derivation of the MHD wave equation for
               a cylinder ..................................... 438
        9.2.2  Boundary conditions for cylindrical
               interfaces ..................................... 445
   9.3  Spectral structure .................................... 450
        9.3.1  One-dimensional inhomogeneity .................. 450
        9.3.2  Cylindrical model problems ..................... 453
        9.3.3  Cluster spectra ................................ 462
   9.4  Stability of cylindrical plasmas ...................... 462
        9.4.1  Oscillation theorems for stability ............. 462
        9.4.2  Stability of plasmas with shearless magnetic
               fields ......................................... 469
        9.4.3  Stability of force-free magnetic fields ........ 475
        9.4.4  Stability of the 'straight tokamak' ............ 482
   9.5  Literature and exercises .............................. 492
10 Initial value problem and wave damping ..................... 496
   10.1 Implications of the continuous spectrum ............... 496
   10.2 Initial value problem ................................. 497
        10.2.1 Reduction to a one-dimensional
               representation ................................. 498
        10.2.2 Restoring the three-dimensional picture ........ 502
   10.3 Damping of Alfven waves ............................... 507
        10.3.1 Green's function ............................... 509
        10.3.2 Spectral cuts .................................. 512
   10.4 Quasi-modes ........................................... 516
        10.4.1 Dispersion equation ............................ 517
        10.4.2 Exponential damping ............................ 520
        10.4.3 Different kinds of quasi-modes ................. 522
   10.5 Leaky modes ........................................... 523
        10.5.1 Model equations and boundary conditions ........ 525
        10.5.2 Normal-mode analysis ........................... 528
        10.5.3 Initial value problem approach ................. 529
   10.6 Literature and exercises .............................. 530
11 Resonant absorption and wave heating ....................... 533
   11.1 Ideal MHD theory of resonant absorption ............... 534
        11.1.1 Analytical solution of a simple model
               problem 5 ...................................... 534
        11.1.2 Role of the singularity ........................ 541
        11.1.3 Resonant'absorption'versus resonant
               'dissipation' .................................. 549
   11.2 Heating and wave damping in tokamaks and coronal
        magnetic loops ........................................ 553
        11.2.1 Tokamaks ....................................... 553
        11.2.2 Coronal loops and arcades ...................... 554
        11.2.3 Numerical analysis of resonant absorption ...... 555
   11.3 Alternative excitation mechanisms ..................... 561
        11.3.1 Foot point driving ............................. 562
        11.3.2 Phase mixing ................................... 565
        11.3.3 Applications to solar and magnetospheric
               plasmas ........................................ 567
   11.4 Literature and exercises .............................. 573

Appendices .................................................... 577
A  Vectors and coordinates .................................... 577
   A.l  Vector identities ..................................... 577
   A.2  Vector expressions in orthogonal coordinates .......... 578
        A.2.1  Cartesian coordinates {x, y, z) ................ 580
        A.2.2  Cylinder coordinates (x, θ, z) ................. 581
        A.2.3  Spherical coordinates (x, θ, φ) ................ 582
В  Tables of physical quantities .............................. 585

References .................................................... 594
Index ......................................................... 607


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:25:50 2019. Размер: 19,946 bytes.
Посещение N 1613 c 12.11.2013