Bagchi B. Molecular relaxation in liquids (Oxford, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBagchi B. Molecular relaxation in liquids. - Oxford: Oxford University Press, 2012. - xiv, 312 p.: ill. - Incl. bibl. ref. - Ind.: p.298-312. - ISBN 978-0-19-986332-7
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
Preface ...................................................... xiii
Acknowledgments ................................................ xv
Foreword ..................................................... xvii

1  Basic Concepts ............................................... 3
   1.1  Introduction ............................................ 3
   1.2  Response Functions and Fluctuations ..................... 4
   1.3  Time-Correlation Functions .............................. 6
   1.4  Linear Response Theory .................................. 6
   1.5  Fluctuation-Dissipation Theorem ......................... 8
   1.6  Diffusion, Friction, and Viscosity ...................... 8
   1.7  Summary ................................................ 10

2  Phenomenological Description of Relaxation in Liquids ....... 12
   2.1  Introduction ........................................... 12
   2.2  Langevin Equation ...................................... 13
   2.3  Fokker-Planck Equation ................................. 14
   2.4  Smoluchowski Equation .................................. 15
   2.5  Master Equations ....................................... 16
   2.6  The Special Case of Harmonic Potential ................. 16
   2.7  Summary ................................................ 17

3  Density and Momentum Relaxation in Liquids .................. 19
   3.1  Introduction ........................................... 19
   3.2  Hydrodynamics at Large Length Scales ................... 20
        3.2.1 Rayleigh-Brillouin Spectrum ...................... 22
   3.3  Hydrodynamic Relations between Self-Difrusion
        Coefficient and Viscosity .............................. 24
   3.4  Slow Dynamics at Large Wave Numbers: de Germes
        Narrowing .............................................. 25
   3.5  Extended Hydrodynamics: Dynamics at Intermediate
        Length Scales .......................................... 27
   3.6  Mode-Coupling Theory ................................... 29
   3.7  Summary ................................................ 30

4  Relationship between Theory and Experiment .................. 32
   4.1  Introduction ........................................... 32
   4.2  Dynamic Light Scattering: Probe of Density
        Fluctuation at Long Length Scales ...................... 34
   4.3  Magnetic Resonance Experiments: Probe of Single-
        Particle Dynamics ...................................... 36
   4.4  Kerr Relaxation ........................................ 38
   4.5  Dielectric Relaxation .................................. 38
   4.6  Fluorescence Depolarization ............................ 39
   4.7  Solvation Dynamics (Time-Dependent Fluorescence
        Stokes Shift) .......................................... 40
   4.8  Neutron Scattering: Coherent and Incoherent ............ 41
   4.9  Raman Line-Shape Measurements .......................... 43
   4.10 Coherent Anti-Stokes Raman Scattering (CARS) ........... 45
   4.11 Echo Techniques ........................................ 45
   4.12 Ultrafast Chemical Reactions ........................... 47
   4.13 Fluorescence Quenching ................................. 47
   4.14 Two-Dimensional Infrared (2D-IR) Spectroscopy .......... 48
   4.15 Single-Molecule Spectroscopy ........................... 49
   4.16 Summary ................................................ 49

5  Orientational and Dielectric Relaxation ..................... 51
   5.1  Introduction ........................................... 51
   5.2  Equilibrium and Time-Dependent Orientational
        Correlation Functions .................................. 55
   5.3  Relationship with Experimental Observables ............. 57
   5.4  Molecular Hydrodynamic Description of Orientational
        Motion ................................................. 57
        5.4.1  The Equations of Motion ......................... 58
        5.4.2  Limiting Situations ............................. 59
   5.5  Markovian Theory of Collective Orientational
        Relaxation: Berne Treatment ............................ 59
        5.5.1  Generalized Smoluchowski Equation Description ... 60
        5.5.2  Solution by Spherical Harmonic Expansion ........ 62
        5.5.3  Relaxation of Longitudinal and Transverse
               Components ...................................... 64
        5.5.4  Molecular Theory of Dielectric Relaxation ....... 64
        5.5.5  Hidden Role of Translations Motion in
               Orientational Relaxation ........................ 65
        5.5.6  Orientational de Gennes Narrowing at
               Intermediate Wave Numbers ....................... 66
        5.5.7  Reduction to the Continuum Limit ................ 67
   5.6  Memory Effects in Orientational Relaxation ............. 68
   5.7  Relationship between Macroscopic and Microscopic
        Orientational Relaxations .............................. 70
   5.8  The Special Case of Orientational Relaxation of Water .. 72
   5.9  Lattice Models of Orientational Relaxation ............. 74
   5.10 Nonassociated Liquids .................................. 75
   5.11 Summary ................................................ 76

6  Solvation Dynamics in Dipolar Liquid ........................ 78
   6.1  Introduction ........................................... 78
   6.2  Physical Concepts and Measurement ...................... 79
        6.2.1 Measuring Ultrafast, Sub-100fs Decay ............. 83
   6.3  Phenomenological Theories: Continuum-Model
        Descriptions ........................................... 86
        6.3.1  Homogeneous Dielectric Models ................... 86
        6.3.2  Inhomogeneous Dielectric Models ................. 89
        6.3.3  Dynamic Exchange Model .......................... 91
   6.4  Experimental Results: A Chronological Overview ......... 93
        6.4.1  Discovery of Multiexponential Solvation
               Dynamics: Phase-I (1980-1990) ................... 93
        6.4.2  Discovery of Subpicosecond Ultrafast Solvation
               Dynamics: Phase-II (1990-2000) .................. 94
        6.4.3  Solvation Dynamics in Complex Systems: Phase-
               Ill (2000-) ..................................... 95
   6.5  Microscopic Theories ................................... 97
        6.5.1  Molecular Hydrodynamics Description ............. 97
        6.5.2  Polarization and Dielectric Relaxation of
               Pure Liquid ..................................... 98
               6.5.2.1 Effects of Translational Diffusion in
                       Solvation Dynamics ...................... 98
   6.6  Simple Idealized Models ............................... 100
        6.6.1  Overdamped Solvation: Brownian Dipolar
               Lattice ........................................ 101
        6.6.2  Underdamped Solvation: Stockmayer Liquid ....... 102
   6.7  Solvation Dynamics in Water, Acetonitrile, and
        Methanol Revisited .................................... 102
        6.7.1 The Sub-1 OOfs Ultrafast Component:
              Microscopic Origin .............................. 104
   6.8  Effects of Solvation on Chemical Processes in the
        Solution Phase ........................................ 106
        6.8.1  Limiting Ionic Conductivity of Electrolyte
               Solutions: Control of a Slow Phenomenon by
               Ultrafast Dynamics ............................. 107
        6.8.2  Effects of Ultrafast Solvation in Electron-
               Transfer Reactions ............................. 107
        6.8.3  Nonequilibrium Solvation Effects in Chemical
               Reactions ...................................... 107
               6.8.3.1  Strong Solvent Forces ................. 109
               6.8.3.2  Weak Solvent Forces ................... 110
   6.9  Solvation Dynamics in Several Related Systems ......... 111
        6.9.1  Solvation in Aqueous Electrolyte Solutions ..... 111
        6.9.2  Dynamics of Electron Solvation ................. 111
        6.9.3  Solvation Dynamics in Supercritical Fluids ..... 112
        6.9.4  Nonpolar Solvation Dynamics .................... 112
   6.10 Computer Simulation Studies: Simple and Complex
        Systems ............................................... 113
        6.10.1 Aqueous Micelles ............................... 114
        6.10.2 Water Pool in Reverse Micelles ................. 114
        6.10.3 Protein Hydration Layer ........................ 114
        6.10.4 DNA Groove Hydration Layer ..................... 115
   6.11  Summary .............................................. 115

7  Activated Barrier-Crossing Dynamics in Liquids ............. 117
   7.1  Introduction .......................................... 117
   7.2  Microscopic aspects ................................... 119
        7.2.1  Stochastic Models: Understanding from
               Eigenvalue Analysis ............................ 119
        7.2.2  Validity of a Rate-Law Description: Role of
               Macroscopic Fluctuations ....................... 122
        7.2.3  Time-Correlation-Function Approach:
               Separation of Transient Behavior from Rate
               Law ............................................ 124
   7.3  Transition-State Theory ............................... 126
   7.4  Frictional Effects on Barrier-Crossing Rate in
        Solution: Kramers' Theory ............................. 127
        7.4.1  Low-Friction Limit ............................. 129
        7.4.2  Limitations of Kramers' Theory ................. 130
        7.4.3  Comparison of Kramers' Theory with
               Experiments .................................... 131
        7.4.4  Comparison of Kramers' Theory with Computer
               Simulations .................................... 132
   7.5  Memory Effects in Chemical Reactions: Grote-Hynes
        Generalization of Kramers' Theory ..................... 132
        7.5.1  Frequency Dependence of Friction: General
               Aspects ........................................ 138
               7.5.1.1  Frequency-Dependent Friction from
                        Hydrodynamics ......................... 138
               7.5.1.2  Frequency-Dependent Friction from
                        Mode-Coupling Theory .................. 140
        7.5.2  Comparison of Grote-Hynes Theory with
               Experiments and Computer Simulations ........... 142
   7.6  Variational Transition-State Theory ................... 143
   7.7  Multidimensional Reaction Surface ..................... 144
        7.7.1 Multidimensional Kramers' Theory ................ 145
   7.8  Transition Path Sampling .............................. 146
   7.9  Quantum Transition-State Theory ....................... 148
   7.10 Summary ............................................... 149
   Appendix ................................................... 150

8  Barrierless Reactions in Solution .......................... 155
   8.1  Introduction .......................................... 155
   8.2  Standard Model of Barrierless Reactions ............... 158
        8.2.1  Exactly Solvable Models for Photochemical
               Reactions ...................................... 159
               8.2.1.1  Oster-Nishijima Model ................. 160
               8.2.1.2  Staircase Model ....................... 161
               8.2.1.3  Pinhole Sink Model .................... 162
        8.2.2  Approximate Solutions of Realistic Models ...... 164
               8.2.2.1  Delta Function Sink ................... 164
               8.2.2.2  Gaussian Sink ......................... 165
   8.3  Inertial Effects in Barrierless Reactions: Viscosity
        Turnover of Rate ...................................... 166
   8.4  Memory Effects in Barrierless Reactions ............... 170
   8.5  Unusual Features of Barrierless Chemical Reactions .... 172
        8.5.1  Excitation Wavelength Dependence ............... 172
        8.5.2  Negative Activation Energy ..................... 172
   8.6  Multidimensional Reaction Potential Energy Surface .... 174
   8.7  Analysis of Experimental Results ...................... 174
        8.7.1  Photoisomerization and Ground-State Potential
               Energy Surface ................................. 174
        8.7.2  Decay Dynamics of Rhodopsin and Isorhodopsin ... 175
        8.7.3  Conflicting Crystal Violet Isomerization
               Mechanism ...................................... 177
   8.8  Summary ............................................... 177

9  Dynamical Disorder, Geometric Bottlenecks, and Diffusion-
   Controlled Bimolecular Reactions ........................... 180
   9.1  Introduction .......................................... 180
   9.2  Passage through Geometric Botdenecks .................. 181
        9.2.1  Diffusion in a Two-Dimensional Periodic
               Channel ........................................ 181
        9.2.2  Diffusion in a Random Lorentz Gas .............. 183
   9.3  Dynamical Disorder .................................... 184
   9.4  Diffusion over a Rugged Energy Landscape .............. 186
   9.5  Diffusion-Controlled Bimolecular Reactions ............ 190
   9.6  Summary ............................................... 193

10 Electron-Transfer Reactions ................................ 195
   10.1 Introduction .......................................... 195
   10.2 Classification of Electron-Transfer Reactions ......... 196
        10.2.1 Classification Based on Ligand Participation ... 196
        10.2.2 Classification Based on Interactions between
               Reactant and Product Potential Energy
               Surfaces ....................................... 196
   10.3 Marcus Theory ......................................... 197
        10.3.1 Reaction Coordinate (RC) ....................... 198
        10.3.2 Free-Energy Surfaces: Force Constant of
               Polarization Fluctuation ....................... 200
        10.3.3 Derivation of ETR Rate ......................... 203
        10.3.4 Experimental Verification of the Marcus
               Theory ......................................... 206
   10.4 Dynamical Solvent Effects on ETRs (One-Dimensional
        Descriptions) ......................................... 208
   10.5 Role of Vibrational Modes in Weakening Solvent
        Dependence ............................................ 210
        10.5.1 Role of Classical Intramolecular Vibrational
               Modes: Sumi-Marcus Theory ...................... 210
        10.5.2 Role of High-Frequency Vibration Modes ......... 213
        10.5.3 Hybrid Model of ETR: Crossover from Solvent
               to Vibrational Control ......................... 215
   10.6 Theoretical Formulation of Multidimensional Electron
        Transfer .............................................. 216
   10.7 Effects ofUltrafast Solvation on Electron-Transfer
        Reactions ............................................. 220
        10.7.1 Absence of Significant Dynamic Solvent
               Effects on ETR in Water, Acetonitrile, and
               Methanol ....................................... 220
   10.8 Summary ............................................... 221
   Appendix ................................................... 222

11 Forster (or, Fluorescence) Resonance Energy Transfer
   (FRET) ..................................................... 226
   11.1 Introduction .......................................... 226
   11.2 A Brief Historical Perspective ........................ 229
   11.3  Derivation of Förster Expression ..................... 230
        11.3.1 Expressions for Emission (or fluoriscence) 
               Spectrum ....................................... 234
        11.3.2 Absorption Spectrum ............................ 237
        11.3.3 The Final Forster Expression ................... 238
   11.4 Applications of Forster Theory to Chemistry,
        Biology, and Materials Science ........................ 239
        11.4.1 FRET-Based Glucose Sensor ...................... 239
        11.4.2 FRET and Macromolecular Dynamics ............... 239
        11.4.3 FRET and Single-Molecule Spectroscopy .......... 243
        11.4.4 Beyond Organic Dyes as Donor-Acceptor Pairs .... 247
        11.4.5 FRET and Conjugated Polymers ................... 249
   11.5 Beyond Forster Formalism .............................. 252
        11.5.1 Orientation Factor ............................. 252
        11.5.2 Point-Dipole Approximation ..................... 253
        11.5.3 Contribution of Optically Dark States .......... 254
   11.6 Summary ............................................... 257

12 Vibrational-Energy Relaxation .............................. 259
   12.1 Introduction .......................................... 259
   12.2 Isolated Binary Collision (IBC) Model ................. 261
   12.3 Landau-Teller Expression: The Classical Limit ......... 263
   12.4 Weak-Coupling Model: Time-Correlation-Function
        Representation of Transition Probability .............. 265
   12.5 Vibrational Relaxation at High Frequency: Quantum
        Effects ............................................... 268
   12.6 Experimental Studies of Vibrational-Energy
        Relaxation ............................................ 271
   12.7 Computer-Simulation Studies of Vibrational-Energy
        Relaxation ............................................ 272
        12.7.1 Vibrational-Energy Relaxation of Water ......... 272
        12.7.2 Vibrational-Energy Relaxation in Liquid
               Oxygen and Nitrogen ............................ 274
   12.8 Quantum Interference Effects on Vibrational-Energy
        Relaxation in a Three-Level System: Breakdown of the
        Rate Equation Description ............................. 275
   12.9 Vibrational Life Time Dynamics in Supercritical
        Fluids................................................. 277
   12.10 Summary .............................................. 279

13 Vibrational-Phase Relaxation ............................... 280
   13.1 Introduction .......................................... 280
   13.2 Kubo-Oxtoby Theory of Vibrational Line Shapes ......... 282
   13.3 Homogeneous vs. Inhomogeneous Linewidths .............. 287
   13.4 Relative Role of the Attractive and Repulsive Forces .. 289
   13.5 Vibration-Rotation Coupling ........................... 289
   13.6 Experimental Results of Vibrational-Phase Relaxation .. 290
        13.6.1 Semiquantitative Aspects of Dephasing Rates
               in Solution .................................... 291
        13.6.2 Subquadratic Quantum Number Dependence ......... 291
   13.7 Vibrational Dephasing Near the Gas-Liquid Critical
        Point ................................................. 292
   13.8 Multidimensional IR Spectroscopy ...................... 292
   13.9 Summary ............................................... 294

14 Epilogue ................................................... 296

Index ......................................................... 298


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:25:22 2019. Размер: 23,120 bytes.
Посещение N 1446 c 17.09.2013