Sun C.T. Fracture mechanics (Waltham, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSun C.T. Fracture mechanics / C.T.Sun, Z.-H.Jin. - Waltham: Academic Press, 2012. - xvii, 311 p.: ill. - Incl. bibl. ref. - Ind.: p.295-311. - ISBN 978-0-12-385001-0
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
Preface ...................................................... xiii
About the Authors ............................................ xvii

CHAPTER 1  Introduction ......................................... 1
1.1  Failure of Solids .......................................... 1
1.2  Fracture Mechanics Concepts ................................ 2
1.3  History of Fracture Mechanics .............................. 5
     1.3.1  Griffith Theory of Fracture ......................... 5
     1.3.2  Fracture Mechanics as an Engineering Science ........ 6
     1.3.3  Recent Developments in Fracture Mechanics
Research ........................................................ 7
References ...................................................... 8

CHAPTER 2  Griffith Theory of Fracture ......................... 11
2.1  Theoretical Strength ...................................... 11
     2.1.1  An Atomistic Model ................................. 11
     2.1.2  The Energy Consideration ........................... 13
2.2  The Griffith Theory of Fracture ........................... 14
2.3  A Relation among Energies ................................. 17
References ..................................................... 22
Problems ....................................................... 22

CHAPTER 3  The Elastic Stress Field around a Crack Tip ......... 25
3.1  Basic Modes of Fracture and Stress Intensity Factor ....... 25
3.2  Method of Complex Potential for Plane Elasticity
     (The Kolosov-Muskhelishvili Formulas) ..................... 27
     3.2.1  Basic Equations of Plane Elasticity and Airy
            Stress Function .................................... 27
     3.2.2  Analytic Functions and Cauchy-Riemann
            Equations .......................................... 29
     3.2.3  Complex Potential Representation of the Airy
            Stress Function .................................... 30
     3.2.4  Stress and Displacement ............................ 32
3.3  Westergaard Function Method ............................... 34
     3.3.1  Symmetric Problems (Mode I) ........................ 34
     3.3.2  Skew-Symmetric Problems (Mode II) .................. 36
3.4  Solutions by the Westergaard Function Method .............. 38
     3.4.1  Mode I Crack ....................................... 38
     3.4.2  Mode II Crack ...................................... 43
     3.4.3  Mode III Crack ..................................... 46
     3.4.4  Complex Representation of Stress Intensity Factor .. 48
3.5  Fundamental Solutions of Stress Intensity Factor .......... 50
     3.5.1  A Finite Crack in an Infinite Plate ................ 51
     3.5.2  Stress Intensity Factors for a Crack Subjected
            to Arbitrary Crack Face Loads ...................... 53
     3.5.3  A Semi-infinite Crack in an Infinite Medium ........ 54
3.6  Finite Specimen Size Effects .............................. 55
3.7  Williams' Crack Tip Fields ................................ 56
     3.7.1  Williams' Crack Tip Stress and Displacement
            Fields: Mode I and II .............................. 57
     3.7.2  Williams' Crack Tip Stress and Displacement
            Fields: Mode III ................................... 63
3.8  K-Dominance ............................................... 66
3.9  Irwin's K-Based Fracture Criterion ........................ 68
References ..................................................... 71
Problems ....................................................... 72

CHAPTER 4  Energy Release Rate ................................. 77
4.1  The Concept of Energy Release Rate ........................ 77
4.2  The Relations between G and K by the Crack Closure
     Method .................................................... 78
4.3  The J-Integral ............................................ 82
     4.3.1  J as Energy Release Rate ........................... 83
     4.3.2  Path-Independence .................................. 86
     4.3.3  Relation between J and K ........................... 87
     4.3.4  Examples ........................................... 89
4.4  Stress Intensity Factor Calculations Using the Finite
     Element Method ............................................ 92
     4.4.1  Direct Method ...................................... 92
     4.4.2  Modified Crack Closure Technique ................... 93
4.5  Three-Dimensional Field near Crack Front .................. 94
     4.5.1  Distribution of Stress Intensity Factor over
            Thickness .......................................... 95
     4.5.2  Plane Strain Zone at the Crack Front ............... 99
References .................................................... 101
Problems ...................................................... 102

CHAPTER 5  Mixed Mode Fracture ................................ 105
5.1  A Simple Elliptical Model ................................ 105
5.2  Maximum Tensile Stress Criterion (MS-Criterion) .......... 108
5.3  Strain Energy Density Criterion (S-Criterion) ............ 111
5.4  Maximum Energy Release Rate Criterion (ME-Criterion) ..... 115
5.5  Experimental Verifications ............................... 117
References .................................................... 119
Problems ...................................................... 120

CHAPTER 6  Crack Tip Plasticity ............................... 123
6.1  Yield Criteria ........................................... 124
     6.1.1  Tresca Yield Criterion ............................ 124
     6.1.2  von Mises Yield Criterion ......................... 125
6.2  Constitutive Relationships in Plasticity ................. 125
     6.2.1  Flow Theory of Plasticity ......................... 126
     6.2.2  Deformation Theory of Plasticity .................. 128
6.3  Irwin's Model for Mode I Fracture ........................ 130
     6.3.1  Plastic Zone Size ................................. 130
     6.3.2  Effective Crack Length and Adjusted Stress
            Intensity Factor .................................. 133
     6.3.3  Crack Tip Opening Displacement .................... 134
6.4  The Dugdale Model ........................................ 134
     6.4.1  Small-Scale Yielding .............................. 135
     6.4.2  A Crack in an Infinite Plate ...................... 137
6.5  Plastic Zone Shape Estimate According to the Elastic
     Solution ................................................. 140
     6.5.1  Principal Stresses ................................ 140
     6.5.2  Plane Stress Case ................................. 141
     6.5.3  Plane Strain Case ................................. 143
     6.5.4  Antiplane Strain Case ............................. 145
6.6  Plastic Zone Shape According to Finite Element
     Analyses ................................................. 146
6.7  A Mode III Small-Scale Yielding Solution ................. 148
     6.7.1  Basic Equations ................................... 148
     6.7.2  Elastic-Plastic Solution and the Crack Tip
            Plastic Zone ...................................... 149
6.8  A Mode III Small-Scale Yielding Solution-Elastic
     Power-Law Hardening Materials ............................ 152
     6.8.1  Basic Equations ................................... 153
     6.8.2  Boundary Conditions of SSY ........................ 156
     6.8.3  Elastic-Plastic Solution .......................... 158
6.9  HRR Field ................................................ 162
6.10 Energy Release Rate Concept in Elastic-Plastic
     Materials ................................................ 164
References .................................................... 167
Problems ...................................................... 168

CHAPTER 7   Elastic-Plastic Fracture Criteria ................. 171
7.1  Irwin's Adjusted Stress Intensity Factor Approach ........ 171
7.2  K Resistance Curve Approach .............................. 173
7.3  J-Integral as a Fracture Parameter ....................... 177
7.4  Crack Tip Opening Displacement Criterion ................. 178
7.5  Crack Tip Opening Angle Criterion ........................ 181
References .................................................... 185
Problems ...................................................... 186

CHAPTER 8  Interfacial Cracks between Two Dissimilar Solids ... 189
8.1  Crack Tip Fields ......................................... 189
     8.1.1  Asymptotic Stress and Displacement Fields ......... 189
     8.1.2  Mode III Case ..................................... 194
     8.1.3  Dundurs' Parameters ............................... 197
8.2  Complex Function Method and Stress Intensity Factors ..... 197
     8.2.1  Stress Intensity Factor Solutions for Two Typical
            Crack Problems .................................... 198
     8.2.2  Further Comments on the Stress Intensity Factor
            Definitions ....................................... 200
8.3  Crack Surface Contact Zone and Stress Oscillation Zone ... 203
     8.3.1  Crack Surface Contact Zone ........................ 203
     8.3.2  Stress Oscillation Zone ........................... 205
8.4  Energy Release Rate ...................................... 207
     8.4.1  Energy Release Rate ............................... 207
     8.4.2  Stress Intensity Factor Calculations .............. 209
8.5  Fracture Criterion ....................................... 212
8.6  Crack Kinking Out of the Interface ....................... 213
8.7  Contact and Friction in Interfacial Cracks ............... 215
     8.7.1  Crack Tip Fields .................................. 215
     8.7.2  Finite Element Procedure for Energy Calculation ... 218
     8.7.3  Fracture Criterion ................................ 220
     8.7.4  Effect of Compressive Loading ..................... 223
References .................................................... 223
Problems ...................................................... 224

CHAPTER 9  Cohesive Zone Model ................................ 227
9.1  The Barenblatt Model ..................................... 227
9.2  Cohesive Zone Concept in Continuum Mechanics and 
     Cohesive Laws ............................................ 230
     9.2.1  The Dugdale Model ................................. 233
     9.2.2  A Linear Softening Model .......................... 233
     9.2.3  A Trapezoidal Model ............................... 234
     9.2.4  An Exponential Model .............................. 234
     9.2.5  A Cohesive Zone Model Based on Necking ............ 235
9.3  A Discussion on the Linear Hardening Law ................. 235
9.4  Cohesive Zone Modeling and LEFM .......................... 238
9.5  Cohesive Zone Modeling of Interfacial Fracture ........... 240
     9.5.1  Mixed Mode Cohesive Law ........................... 240
     9.5.2  Cohesive Energy Density ........................... 241
     9.5.3  Cohesive Zone Length .............................. 243
References .................................................... 246
Problems ...................................................... 246

CHAPTER 10 Special Topics ..................................... 247
10.1 Fracture Mechanics of Anisotropic Solids ................. 247
     10.1.1 Basic Plane Elasticity Equations of Anisotropic
            Solids ............................................ 248
     10.1.2 A Mode I Crack in an Infinite Anisotropic Plate
            under Uniform Crack Surface Pressure .............. 250
     10.1.3 A Mode II Crack in an Infinite Anisotropic Plate
            under Uniform Crack Surface Shear ................. 251
     10.1.4 Energy Release Rate ............................... 252
10.2 Fracture Mechanics of Nonhomogeneous Materials ........... 253
     10.2.1 Basic Plane Elasticity Equations of Nonhomogenous
            Materials ......................................... 254
     10.2.2 Crack Tip Stress and Displacement Fields .......... 256
     10.2.3 Energy Release Rate ............................... 260
     10.2.4 Stress Intensity Factors for a Crack in a Graded 
            Interlayer between Two Dissimilar Materials ....... 264
10.3 Dynamic Fracture Mechanics ............................... 266
     10.3.1 Basic Equations of Plane Elastodynamics ........... 266
     10.3.2 Stationary Cracks under Dynamic Loading ........... 268
     10.3.3 Dynamic Crack Propagation ......................... 271
     10.3.4 Yoffe Crack ....................................... 281
References .................................................... 284

APPENDIX: Stress Intensity Factors ............................ 287
Index ......................................................... 295


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:25:02 2019. Размер: 16,569 bytes.
Посещение N 2175 c 06.08.2013