Thin-film silicon: photovoltaics and large-area electronics (Boca Raton; Lausanne, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаThin-film silicon: photovoltaics and large-area electronics / ed. by A.V.Shah. - Boca Raton: Taylor & Francis; Lausanne: EPFL Press 2010. - 430 p.: ill. - (Engineering Sciences. Micro- and Nanotechnology). - Bibliogr. at the end of the chapters. - Ind.: p.425-430. - ISBN 978-1-4200-6674-6; ISBN 978-2-94022-36-0
 

Оглавление / Contents
 
1  INTRODUCTION ................................................. 1
   1.1  A strong market growth from 1999 to 2008 ................ 1
   1.2  A technology coming to maturity: crystalline silicon .... 2
   1.3  High-efficiency crystalline silicon solar cells ......... 4
   1.4  The silicon feed-stock issue: a trigger for thin-film
        deployment .............................................. 5
   1.5  Thin-film silicon: a unique thin-film technology with
        a "long" history ........................................ 8
   1.6  Amorphous silicon, microcrystalline silicon and
        "micromorph" devices .................................... 9
   1.7  Synergy with the display sector and emergence of a
        large PV sector ........................................ 11
   1.8  Perspectives and challenges for thin-film silicon
        technology ............................................. 13
   1.9  References ............................................. 15
2  BASIC PROPERTIES OF HYDROGENATED AMORPHOUS SILICON
   (a-Si:H) .................................................... 17
   2.1  Introduction ........................................... 17
        2.1.1  Structure of amorphous silicon .................. 18
        2.1.2  "Free" and "trapped" carriers (electrons and
               holes); mobility gap ............................ 22
   2.2  Gap states ............................................. 24
        2.2.1  Bandtail states ................................. 24
        2.2.2  Midgap states: dangling bonds ................... 27
        2.2.3  Light-induced degradation (Staebler-Wronski
               effect) ......................................... 30
   2.3  Optical absorption: optical gap and sub-bandgap
        absorption ............................................. 35
        2.3.1  Absorption coefficient plot ..................... 36
        2.3.2  Link between density of states and absorption
               coefficient ..................................... 38
        2.3.3  Exponential density of states in bandtails and
               Urbach energy in plot of absorption
               coefficient ..................................... 40
        2.3.4  Determination of the optical gap ................ 41
        2.3.5  Relationship between sub-bandgap absorption
               and defect density .............................. 43
        2.3.6  Measurement of sub-bandgap absorption ........... 44
   2.4  Transport, conductivity and recombination .............. 47
        2.4.1  Transport model ................................. 47
        2.4.2  Measurement of conductivity in a co-planar
               configuration ................................... 48
        2.4.3  Dark conductivity odark ......................... 49
        2.4.4  Recombination ................................... 53
        2.4.5  Photoconductivity ............................... 58
   2.5  Doping of amorphous silicon layers ..................... 61
   2.6  Hydrogen in a-Si:H ..................................... 64
        2.6.1  Introduction .................................... 64
        2.6.2  Hydrogen incorporation .......................... 65
        2.6.3  Hydrogen dilution during deposition ............. 67
        2.6.4  Hydrogen effusion and hydrogen surface
               desorption ...................................... 67
        2.6.5  Hydrogen diffusion .............................. 70
        2.6.6  Hydrogen solubility effects ..................... 70
        2.6.7  Hydrogen effects on optoelectronic properties ... 73
        2.6.8  Effect of hydrogen incorporation on the
               bandgap ofa-Si:H ................................ 73
        2.6.9  Stability of dangling bond passivation .......... 74
        2.6.10 Hydrogen and material microstructure ............ 74
        2.6.11 Role of hydrogen in light-induced degradation ... 74
   2.7  Amorphous silicon-germanium and silcon-carbon Alloys ... 76
        2.7.1  Introduction .................................... 76
        2.7.2  Fabrication ..................................... 77
        2.7.3  Structure ofa-Si:Ge:H and a-Si:C:H alloys ....... 79
        2.7.4  Hydrogen incorporation, effusion, surface
               desorption and diffusion ........................ 80
        2.7.5  Microstructural effects (voids) ................. 82
        2.7.6  Dangling bonds, density of defect states ........ 83
        2.7.7  Hydrogen stability versus alloy composition ..... 84
        2.7.8  Doping effects .................................. 84
        2.7.9  Light-induced degradation ....................... 84
        2.7.10 Optical absorption .............................. 84
        2.7.11 Electronic transport properties ................. 85
        2.7.12 Slope of the valence bandtail; Urbach energy .... 86
        2.7.13 Strategies for obtaining good quality alloys .... 87
   2.8  Conclusions ............................................ 87
   2.9  References ............................................. 89
3  BASIC PROPERTIES OF HYDROGENATED MICROCRYSTALLINE SILICON ... 97
   3.1  History ................................................ 97
   3.2  Structural properties of μc-Si:H ...................... 101
        3.2.1  Structure ...................................... 101
        3.2.2  Defects and gap states ......................... 107
        3.2.3  Hydrogen, defect passivation, impurities and
               doping ......................................... 113
        3.2.4  Schematic picture for the structure of
               μc-Si:H ........................................ 118
        3.2.5  Relationships between structural and other
               properties of μc-Si:H material ................. 122
   3.3  Optical properties .................................... 124
   3.4  Electronic properties and transport ................... 126
   3.5  Metastability - instability ........................... 131
   3.6  Alloys ................................................ 132
   3.7  Summary ............................................... 134
   3.8  References ............................................ 135

4  THEORY OF SOLAR CELL DEVICES (SEMI-CONDUCTOR DIODES) ....... 145

   PART I: INTRODUCTION AND "piw-TYPE" DIODES ................. 145
   4.1  Conversion of light into electrical carriers by a
        semi-conductor diode .................................. 145
        4.1.1  First step: generation of electron-hole
               pairs .......................................... 145
        4.1.2  Second step: separation of electrons and
               holes .......................................... 152
   4.2  The "Pn-type" or "classical" diode: dark
        characteristics ....................................... 154
   4.3  The "Pn-type" or "classical" diode: Properties
        under illumination .................................... 158
        4.3.1  Photo-generation and superposition principle
               (ideal case) ................................... 158
        4.3.2  Limitations of a "real" diode (under
               illumination) .................................. 160
        4.3.3  Maximum power point (MPP) and fill factor
               (FF) of a solar cell ........................... 163
        4.3.4  Basic solar cell parameters Jsc, Voc, FF ........ 164
   4.4  Limits on solar cell efficiency ....................... 169
        4.4.1  Limits at standard test conditions (STC) ....... 169
        4.4.2  Variation in light intensity ................... 171
        4.4.3  Variation in operating temperature ............. 172
        4.4.4  Variation in the spectrum of the incoming
               light .......................................... 175

4  THEORY OF SOLAR CELL DEVICES (SEMI-CONDUCTOR DIODES) ....... 176

   PART II: "pin-TYPE" SOLAR CELLS ............................ 176
   4.5  Introduction to "pin-type" solar cells ................ 176
        4.5.1  Basic structure and properties ................. 176
        4.5.2  Formation of the internal electric field ....... 179
        4.5.3  Carrier profiles in the intrinsic layer: free
               carriers Pf and nf ............................. 183
        4.5.4  Trapped charge carriers pt and nt in
               bandtails ...................................... 186
   4.6  Effect of trapped charge in valence and conduction
        bandtails on electric field and carrier transport ..... 189
        4.6.1  Deformation of electric field in i-layer by
               trapped carriers: Concept ...................... 189
        4.6.2  Deformation of electric field in i-layer by
               trapped carriers: numerical simulations for
               amorphous silicon .............................. 190
        4.6.3  Mobilities in amorphous and microcrystalline
               silicon ........................................ 192
   4.7  Dangling bonds and their role in field deformation .... 193
        4.7.1  Dangling bond charge states .................... 193
        4.7.2  Field deformation by charged dangling bonds
               within the i-layer: Concept .................... 196
        4.7.3  Field deformation by charged dangling bonds
               within the i-layer: numerical simulation for
               an amorphous silicon solar cell with di - 
               300 nm ......................................... 198
        4.7.4  Field deformation within the i-layer: summary
               of situation for different i-layer
               thicknesses .................................... 198
   4.8  Recombination and Collection .......................... 201
        4.8.1  p/i and i/n interfaces ......................... 201
        4.8.2  Recombination .................................. 203
        4.8.3  Collection and drift lengths ................... 204
   4.9  Electrical description of the pin-solar cell .......... 205
        4.9.1  Equivalent circuit and extended
               "superposition principle" ...................... 205
        4.9.2  Shunts ......................................... 210
        4.9.3  Variable illumination measurements (VIM) ....... 211
        4.9.4  Reverse saturation current J0 and open
               circuit voltage Voc ............................ 213
        4.9.5  Fill factor in pin-type thin-film silicon
               solar cells .................................... 214
        4.9.6  Limits for the short-circuit current Jsc in
               pin-type thin-film silicon solar cells ......... 215
   4.10 Light-induced degradation or "Staebler-Wronski
        effect" in thin-film silicon solar cells .............. 216
   4.11 Spectral response, light trapping and efficiency
        limits ................................................ 218
        4.11.1 Spectral response (SR) and external quantum
               efficiency (EQE) measurements .................. 218
        4.11.2 Light trapping in thin-film silicon solar
               cells .......................................... 221
        4.11.3 Limits for the efficiency η in pin-type
               thin-film silicon solar cells .................. 225
   4.12 Summary and conclusions ............................... 229
   4.12 References ............................................ 231
5  TANDEM AND MULTI-JUNCTION SOLAR CELLS ...................... 237
   5.1  Introduction, general concept ......................... 237
   5.2  Principle of the two-terminal tandem cell ............. 240
        5.2.1  Construction of basic J-V diagram: Rules for
               finding tandem Jsc, Voc, FF ..................... 240
        5.2.2  Recombination (tunnel) junction ................ 242
        5.2.3  Efficiency limits for tandems .................. 243
   5.3  Practical problems of two-terminal tandem cells ....... 246
        5.3.1  Light trapping ................................. 246
        5.3.2  Efficiency variation due to changes in the
               solar spectrum ................................. 248
        5.3.3  Temperature coefficients ....................... 248
        5.3.4  Pinholes and Shunts ............................ 249
        5.3.5  Cracks ......................................... 250
   5.4  Typical tandem and multi-junction cells ............... 251
        5.4.1  Amorphous tandem cells a-Si:H/a-Si:H ........... 251
        5.4.2  Triple-junction amorphous cells with
               germanium ...................................... 252
        5.4.3  Micromorph (a-Si:H/μc-Si:H) tandem cells ....... 253
        5.4.4  Triple-junctions with microcrystalline
               silicon ........................................ 254
   5.5  Spectral response (SR) and External Quantum
        Efficiency (EQE) measurements ......................... 255
        5.5.1  General principles ............................. 255
        5.5.2  Use of "colored" bias light beams for
               SR/EQE-measurements on tandems and triple-
               junction cells ................................. 256
        5.5.3  SR/EQE measurements for a-Si:H/a-Si:H tandem
               cells .......................................... 257
        5.5.4  Shunt detection in sub-cells by SR/EQE
               measurements ................................... 258
        5.5.5  SR/EQE measurements for triple-junction
               cells .......................................... 260
        5.5.6  SR/EQE measurements for "micromorph" tandem
               cells .......................................... 260
        5.5.7  Necessity for voltage correction (with bias
               voltage) ....................................... 262
   5.6  Conclusions ........................................... 264
   5.7  References ............................................ 266
6  MODULE FABRICATION AND PERFORMANCE ......................... 269
   6.1  Plasma-enhanced chemical vapor deposition (PECVD) ..... 269
        6.1.1  Electrical plasma properties ................... 273
        6.1.2  VHF plasma excitation .......................... 277
        6.1.3  Device-grade material .......................... 283
        6.1.4  Deposition parameters .......................... 286
        6.1.5  Deposition rate ................................ 287
        6.1.6  Deposition regimes for a-Si:H and μc-Si:H ...... 292
        6.1.7  Upscaling ...................................... 297
        6.1.8  Deposition systems ............................. 299
        6.1.9  Roll-to-roll depositions ....................... 300
        6.1.10 Novel deposition systems ....................... 304
   6.2  Hot-wire chemical vapor deposition (HWCVD) ............ 306
        6.2.1  Introduction ................................... 306
        6.2.2  Description of the HWCVD technique ............. 306
        6.2.3  Filament materials ............................. 307
        6.2.4  Types of materials deposited by HWCVD .......... 307
        6.2.5  Mechanisms of the deposition process ........... 308
        6.2.6  Filament aging ................................. 309
        6.2.7  Amorphous and microcrystalline silicon films,
               and microcrystalline silicon carbide alloys .... 309
        6.2.8  Silicon nitride and silicon oxynitride films ... 311
   6.3  Doped layers .......................................... 311
        6.3.1  p-layers ....................................... 312
        6.3.2  Doped microcrystalline layers .................. 314
   6.4  Transparent conductive oxides (TCO) as contact
        materials ............................................. 316
        6.4.1  Glass substrates and specific TCO materials .... 316
        6.4.2  Qualification of TCO materials ................. 317
        6.4.3  Surface texture of TCO ......................... 319
        6.4.4  Cell optics .................................... 324
        6.4.5  Light management in cells ...................... 326
        6.4.6  Optical losses ................................. 328
   6.5  Laser scribing and series connection of cells ......... 331
        6.5.1  Cell interconnection scheme .................... 331
        6.5.2  Power losses due to the series connection of
               cells .......................................... 333
   6.6  Module performance .................................... 336
        6.6.1  Efficiencies ................................... 336
        6.6.2  Energy yield ................................... 338
        6.6.3  Partial shading ................................ 341
        6.6.4  Shunting ....................................... 346
   6.7  Module Finishing ...................................... 351
        6.7.1  Encapsulation .................................. 352
        6.7.2  Module certification ........................... 355
        6.7.3  Long-term stability ............................ 356
   6.8  Conclusions ........................................... 359
   6.9  References ............................................ 360
7  EXAMPLES OF SOLAR MODULE APPLICATIONS ...................... 369
   7.1  Building-integrated photovoltaics (BIPV): aspects
        and examples .......................................... 369
        7.1.1  PV Facade in Munich (Germany) .................. 371
        7.1.2  Alpine roof integrated PV ...................... 373
        7.1.3  PV Roof at Auvernier, Switzerland
               (by Reto Tscharner) ............................ 374
        7.1.4  PV installation in Brazil ...................... 376
        7.1.5  Stillwell Avenue Station, New York City ........ 380
   7.2  Stand-alone and portable applications ................. 382
   7.3  Indoor applications of amorphous silicon solar
        cells ................................................. 385
        7.3.1  Why is amorphous silicon well suited for
               indoor applications? ........................... 386
        7.3.2  Design guidelines for solar powering of
               indoor applications ............................ 387
   7.4  Space applications .................................... 388
        7.4.1  Introduction ................................... 388
        7.4.2  Satellite power generators and specific
               power density .................................. 390
        7.4.3  Radiation resistance of a-Si:H and other PV
               technologies ................................... 392
        7.4.4  a-Si:H based cells for space ................... 393
        7.4.5  Space applications of a-Si:H modules ........... 395
   7.5  Conclusions ........................................... 396
   7.6  References ............................................ 397
8  THIN-FILM ELECTRONICS ...................................... 401
   8.1  Thin-film transistors and display technology .......... 401
        8.1.1  Introduction ................................... 401
        8.1.2  TFTs and flat panel displays ................... 402
        8.1.3  TFT configurations and basic characteristics ... 405
        8.1.4  a-Si:H TFT operation ........................... 407
        8.1.5  μc-Si:H and poly-Si TFT performance and
               other issues ................................... 413
   8.2  Large-area imagers .................................... 413
        8.2.1  Introduction and device configuration .......... 413
        8.2.2  Performance and limitations .................... 415
   8.3  Thin-film sensors on CMOS Chips ....................... 415
        8.3.1  Introduction ................................... 415
        8.3.2  a-Si:H sensor integration ...................... 417
        8.3.3  Performance and limitations .................... 418
   8.4  Conclusions ........................................... 420
   8.5  References ............................................ 421

INDEX ......................................................... 425


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:22:44 2019. Размер: 24,273 bytes.
Посещение N 1662 c 11.10.2011