Lakowicz J.R. Principles of fluorescence spectroscopy (New York, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLakowicz J.R. Principles of fluorescence spectroscopy. - 3rd ed. - New York: Springer, 2006. - xxvi, 954 p.: ill. - Incl. bibl. ref. - Ind.: p.923-954. - ISBN-10 0-387-32278-1; ISBN-13 978-0-387-31278-1
 

Оглавление / Contents
 
1  Introduction to Fluorescence
   1.1  Phenomena of Fluorescence ............................... 1
   1.2  Jablonski Diagram ....................................... 3
   1.3  Characteristics of Fluorescence Emission ................ 6
   1.4  Fluorescence Lifetimes and Quantum Yields ............... 9
   1.5  Fluorescence Anisotropy ................................ 12
   1.6  Resonance Energy Transfer .............................. 13
   1.7  Steady-State and Time-Resolved Fluorescence ............ 14
   1.8  Biochemical Fluorophores ............................... 15
   1.9  Molecular Information from Fluorescence ................ 17
   1.10 Biochemical Examples of Basic Phenomena ................ 20
   1.11 New Fluorescence Technologies .......................... 21
   1.12 Overview of Fluorescence Spectroscopy .................. 24
   References .................................................. 25
   Problems .................................................... 25

2  Instrumentation for Fluorescence Spectroscopy
   2.1. Spectrofluorometers .................................... 27
   2.2  Light Sources .......................................... 31
   2.3  Monochromators ......................................... 34
   2.4  Optical Filters ........................................ 38
   2.5  Optical Filters and Signal Purity ...................... 41
   2.6  Photomultiplier Tubes .................................. 44
   2.7  Polarizers ............................................. 49
   2.8  Corrected Excitation Spectra ........................... 51
   2.9  Corrected Emission Spectra ............................. 52
   2.10 Quantum Yield Standards ................................ 54
   2.11 Effects of Sample Geometry ............................. 55
   2.12 Common Errors in Sample Preparation .................... 57
   2.13 Absorption of Light and Deviation from the
        Beer-Lambert Law ....................................... 58
   2.14 Conclusions ............................................ 59
   References .................................................. 59
   Problems .................................................... 60

3  Fluorophores
   3.1  Intrinsic or Natural Fluorophores ...................... 63
   3.3  Red and Near-Infrared (NIR) Dyes ....................... 74
   3.4  DNA Probes ............................................. 75
   3.5  Chemical Sensing Probes ................................ 78
   3.6  Special Probes ......................................... 79
   3.7  Green Fluorescent Proteins ............................. 81
   3.8  Other Fluorescent Proteins ............................. 83
   3.9  Long-Lifetime Probes ................................... 86
   3.10 Proteins as Sensors .................................... 88
   3.11 Conclusion ............................................. 89
   References .................................................. 90
   Problems .................................................... 94

4  Time-Domain Lifetime Measurements
   4.1. Overview of Time-Domain and Frequency-Domain
        Measurements ........................................... 98
   4.2  Biopolymers Display Multi-Exponential or
        Heterogeneous Decays .................................. 101
   4.3  Time-Correlated Single-Photon Counting ................ 103
   4.4  Light Sources for TCSPC ............................... 107
   4.5  Electronics for TCSPC ................................. 114
   4.6  Detectors for TCSPC ................................... 117
   4.7  Multi-Detector and Multidimensional TCSPC ............. 121
   4.8  Alternative Methods for Time-Resolved Measurements .... 124
   4.9  Data Analysis: Nonlinear Least Squares ................ 129
   4.10 Analysis of Multi-Exponential Decays .................. 133
   4.11 Intensity Decay Laws .................................. 141
   4.12 Global Analysis ....................................... 144
   4.13 Applications of TCSPC ................................. 145
   4.14 Data Analysis: Maximum Entropy Method ................. 148
   References ................................................. 149
   Problems ................................................... 154

5  Frequency-Domain Lifetime Measurements
   5.1  Theory of Frequency-Domain Fluorometry ................ 158
   5.2  Frequency-Domain Instrumentation ...................... 163
   5.3  Color Effects and Background Fluorescence ............. 168
   5.4  Representative Frequency-Domain Intensity Decays ...... 170
   5.5  Simple Frequency-Domain Instruments ................... 173
   5.6  Gigahertz Frequency-Domain Fluorometry ................ 175
   5.7  Analysis of Frequency-Domain Data ..................... 178
   5.8  Biochemical Examples of Frequency-Domain Intensity
        Decays ................................................ 186
   5.9 Phase-Angle and Modulation Spectra ..................... 189
   5.10 Apparent Phase and Modul ation Lifetimes .............. 191
   5.11 Derivation of the Equations for Phase-Modulation
        Fluorescence .......................................... 192
   5.12 Phase-Sensitive Emission Spectra ...................... 194
   5.13 Phase-Modulation Resolution of Emission Spectra ....... 197
   References ................................................. 199
   Problems ................................................... 203

6  Solvent and Environmental Effects
   6.1  Overview of Solvent Polarity Effects .................. 205
   6.2  General Solvent Effects: The Lippert-Mataga
        Equation .............................................. 208
   6.3  Specific Solvent Effects .............................. 213
   6.4  Temperature Effects ................................... 216
   6.5  Phase Transitions in Membranes ........................ 217
   6.6  Additional Factors that Affect Emission Spectra ....... 219
   6.7  Effects of Viscosity .................................. 223
   6.8  Probe-Probe Interactions .............................. 225
   6.9  Biochemical Applications of Environment-Sensitive
        Fluorophores .......................................... 226
   6.10 Advanced Solvent-Sensitive Probes ..................... 228
   6.11 Effects of Solvent Mixtures ........................... 229
   6.12 Summary of Solvent Effects ............................ 231
   References ................................................. 232
   Problems ................................................... 235

7  Dynamics of Solvent and Spectral Relaxation
   7.1  Overview of Excited-State Processes ................... 237
   7.2  Measurement of Time-Resolved Emission Spectra
        (TRES) ................................................ 240
   7.3  Spectral Relaxation in Proteins ....................... 242
   7.4  Spectral Relaxation in Membranes ...................... 245
   7.5  Picosecond Relaxation in Solvents ..................... 249
   7.6  Measurement of Multi-Exponential Spectral
        Relaxation ............................................ 252
   7.7  Distinction between Solvent Relaxation and Formation
        of Rotational Isomers ................................. 253
   7.8  Comparison of TRES and Decay-Associated Spectra ....... 255
   7.9  Lifetime-Resolved Emission Spectra .................... 255
   7.10 Red-Edge Excitation Shifts ............................ 257
   7.11 Excited-State Reactions ............................... 259
   7.12 Theory for a Reversible Two-State Reaction ............ 262
   7.13 Time-Domain Studies of Naphthol Dissociation .......... 264
   7.14 Analysis of Excited-State Reactions by Phase-
        Modulation Fluorometry ................................ 265
   7.15 Biochemical Examples of Excited-State Reactions ....... 270
   References ................................................. 270
   Problems ................................................... 275

8  Quenching of Fluorescence
   8.1  Quenchers of Fluorescence ............................. 278
   8.2  Theory of Collisional Quenching ....................... 278
   8.3  Theory of Static Quenching ............................ 282
   8.4  Combined Dynamic and Static Quenching ................. 282
   8.5  Examples of Static and Dynamic Quenching .............. 283
   8.6  Deviations from the Stern-Volmer Equation: Quenching
        Sphere of Action ...................................... 284
   8.7  Effects of Steric Shielding and Charge on Quenching ... 286
   8.8  Fractional Accessibility to Quenchers ................. 288
   8.9  Applications of Quenching to Proteins ................. 290
   8.10 Application of Quenching to Membranes ................. 293
   8.11 Lateral Diffusion in Membranes ........................ 300
   8.12 Quenching-Resolved Emission Spectra ................... 301
   8.13 Quenching and Association Reactions ................... 304
   8.14 Sensing Applications of Quenching ..................... 305
   8.15 Applications of Quenching to Molecular Biology ........ 310
   8.16 Quenching on Gold Surfaces ............................ 313
   8.17 Intramolecular Quenching .............................. 314
   8.18 Quenching of Phosphorescence .......................... 317
   References ................................................. 318
   Problems ................................................... 327

9  Mechanisms and Dynamics of Fluorescence Quenching
   9.1  Comparison of Quenching and Resonance Energy
        Transfer .............................................. 331
   9.2  Mechanisms of Quenching ............................... 334
   9.3  Energetics of Photoinduced Electron Transfer .......... 336
   9.4  PET Quenching in Biomolecules ......................... 341
   9.5  Single-Molecule PET ................................... 342
   9.6  Transient Effects in Quenching ........................ 343
   References ................................................. 348
   Problems ................................................... 351

10 Fluorescence Anisotropy
   10.1 Definition of Fluorescence Anisotropy ................. 353
   10.2 Theory for Anisotropy ................................. 355
   10.3 Excitation Anisotropy Spectra ......................... 358
   10.4 Measurement of Fluorescence Anisotropics .............. 361
   10.5 Effects of Rotational Diffusion on Fluorescence
        Anisotropics: The Perrin Equation ..................... 366
   10.6 Perrin Plots of Proteins .............................. 370
   10.7 Biochemical Applications of Steady-State
        Anisotropics .......................................... 372
   10.8 Anisotropy of Membranes and Membrane-Bound Proteins ... 374
   10.9 Transition Moments .................................... 377
   References ................................................. 378
   Additional Reading on the Application of Anisotropy ........ 380
   Problems ................................................... 381

11 Time-Dependent Anisotropy Decays
   11.1 Time-Domain and Frequency-Domain Anisotropy Decays .... 383
   11.2 Anisotropy Decay Analysis ............................. 387
   11.3 Analysis of Frequency-Domain Anisotropy Decays ........ 390
   11.4 Anisotropy Decay Laws ................................. 390
   11.5 Time-Domain Anisotropy Decays of Proteins ............. 394
   11.6 Frequency-Domain Anisotropy Decays of Proteins ........ 397
   11.7 Hindered Rotational Diffusion in Membranes ............ 399
   11.8 Anisotropy Decays of Nucleic Acids .................... 402
   11.9 Correlation Time Imaging .............................. 406
   11.10 Microsecond Anisotropy Decays ........................ 408
   References ................................................. 409
   Problems ................................................... 412

12 Advanced Anisotropy Concepts
   12.1 Associated Anisotropy Decay ........................... 413
   12.2 Biochemical Examples of Associated Anisotropy
        Decays ................................................ 417
   12.3 Rotational Diffusion of Non-Spherical Molecules:
        An Overview ........................................... 418
   12.4 Ellipsoids of Revolution .............................. 420
   12.5 Complete Theory for Rotational Diffusion of
        Ellipsoids ............................................ 425
   12.6 Anisotropic Rotational Diffusion ...................... 426
   12.7 Global Anisotropy Decay Analysis ...................... 429
   12.8 Intercalated Fluorophores in DNA ...................... 432
   12.9 Transition Moments .................................... 433
   12.10 Lifetime-Resolved Anisotropics ....................... 435
   12.11 Soleillet's Rule: Multiplication of Depolarized
         Factors .............................................. 436
   12.12 Anisotropies Can Depend on Emission Wavelength ....... 437
   References ................................................. 438
   Problems ................................................... 441

13 Energy Transfer
   13.1 Characteristics of Resonance Energy Transfer .......... 443
   13.2 Theory of Energy Transfer for a Donor-Acceptor Pair ... 445
   13.3 Distance Measurements Using RET ....................... 451
   13.4 Biochemical Applications of RET ....................... 453
   13.5 RET Sensors ........................................... 458
   13.6 RET and Nucleic Acids ................................. 459
   13.7 Energy-Transfer Efficiency from Enhanced Acceptor
        Fluorescence .......................................... 461
   13.8 Energy Transfer in Membranes .......................... 462
   13.9 Effect of k2 on RET ................................... 465
   13.10 Energy Transfer in Solution .......................... 466
   13.11 Representative R0 Values ............................. 467
   References ................................................. 468
   Additional References on Resonance Energy Transfer ......... 471
   Problems ................................................... 472

14 Time-Resolved Energy Transfer and Conformational
   Distributions of Biopolymers
   14.1 Distance Distributions ................................ 477
   14.2 Distance Distributions in Peptides .................... 479
   14.3 Distance Distributions in Peptides .................... 482
   14.4 Distance-Distribution Data Analysis ................... 485
   14.5 Biochemical Applications of Distance Distributions .... 490
   14.6 Time-Resolved RET Imaging ............................. 497
   14.7 Effect of Diffusion for Linked D-A Pairs .............. 498
   14.8 Conclusion ............................................ 501
   References ................................................. 501
   Representative Publications on Measurement of Distance
   Distributions .............................................. 504
   Problems ................................................... 505

15 Energy Transfer to Multiple Acceptors in One,Two, or
   Three Dimensions
   15.1 RET in Three Dimensions ............................... 507
   15.2 Effect of Dimensionality on RET ....................... 511
   15.3 Biochemical Applications of RET with Multiple
        Acceptors ............................................. 515
   15.4 Energy Transfer in Restricted Geometries .............. 516
   15.5 RET in the Presence of Diffusion ...................... 519
   15.6 RET in the Rapid Diffusion Limit ...................... 520
   15.7 Conclusions ........................................... 524
   References ................................................. 524
   Additional References on RET between Unlinked Donor and
   Acceptor ................................................... 526
   Problems ................................................... 527

16 Protein Fluorescence
   16.1 Spectral Properties of the Aromatic Amino Acids ....... 530
   16.2 General Features of Protein Fluorescence .............. 535
   16.3 Tryptophan Emission in an Apolar Protein
        Environment ........................................... 538
   16.4 Energy Transfer and Intrinsic Protein Fluorescence .... 539
   16.5 Calcium Binding to Calmodulin Using Phenylalanine
        and Tyrosine Emission ................................. 545
   16.6 Quenching of Tryptophan Residues in Proteins .......... 546
   16.7 Association Reaction of Proteins ..................... 551
   16.8 Spectral Properties of Genetically Engineered
        Proteins .............................................. 554
   16.9 Protein Folding ....................................... 557
   16.10 Protein Structure and Tryptophan Emission ............ 560
   16.11 Tryptophan Analogues ................................. 562
   16.12 The Challenge of Protein Fluorescence ................ 566
   References ................................................. 567
   Problems ................................................... 573

17 Time-Resolved Protein Fluorescence
   17.1 Intensity Decays of Tryptophan: The Rotamer Model ..... 578
   17.2 Time-Resolved Intensity Decays of Tryptophan and
        Tyrosine .............................................. 580
   17.3 Intensity and Anisotropy Decays of Proteins ........... 583
   17.4 Protein Unfolding Exposes the Tryptophan Residue to
        Water ................................................. 588
   17.5 Anisotropy Decays of Proteins ......................... 589
   17.6 Biochemical Examples Using Time-Resolved Protein
        Fluorescence .......................................... 591
   17.7 Time-Dependent Spectral Relaxation of Tryptophan ...... 596
   17.8 Phosphorescence of Proteins ........................... 598
   17.9 Perspectives on Protein Fluorescence .................. 600
   References ................................................. 600
   Problems ................................................... 605

18 Multiphoton Excitation and Microscopy
   18.1 Introduction to Multiphoton Excitation ................ 607
   18.2 Cross-Sections for Multiphoton Absorption ............. 609
   18.3 Two-Photon Absorption Spectra ......................... 609
   18.4 Two-Photon Excitation of a DNA-Bound Fluorophore ...... 610
   18.5 Anisotropies with Multiphoton Excitation .............. 612
   18.6 MPE for a Membrane-Bound Fluorophore .................. 613
   18.7 MPE of Intrinsic Protein Fluorescence ................. 613
   18.8 Multiphoton Microscopy ................................ 616
   References ................................................. 619
   Problems ................................................... 621

19 Fluorescence Sensing
   19.1 Optical Clinical Chemistry and Spectral Observables ... 623
   19.2 Spectral Observables for Fluorescence Sensing ......... 624
   19.3 Mechanisms of Sensing ................................. 626
   19.4 Sensing by Collisional Quenching ...................... 627
   19.5 Energy-Transfer Sensing ............................... 633
   19.6 Two-State pH Sensors .................................. 637
   19.7 Photoinduced Electron Transfer (PET) Probes for
        Metal Ions and Anion Sensors .......................... 641
   19.8 Probes of Analyte Recognition ......................... 643
   19.9 Glucose-Sensitive Fluorophores ........................ 650
   19.10 Protein Sensors ...................................... 651
   19.11 GFP Sensors .......................................... 654
   19.12 New Approaches to Sensing ............................ 655
   19.13 In-Vivo Imaging ...................................... 656
   19.14 Immunoassays ......................................... 658
   Immunoassays ............................................... 661
   References ................................................. 663
   Problems ................................................... 672

20 Novel Fluorophores
   20.1 Semiconductor Nanoparticles ........................... 675
   20.2 Lanthanides ........................................... 679
   20.3 Long-Lifetime Metal-Ligand Complexes .................. 683
   20.4 Long-Wavelength Long-Lifetime Fluorophores ............ 695
   References ................................................. 697
   Problems ................................................... 702

21 DN A Technology
   21.1 DNA Sequencing ........................................ 705
   21.2 High-Sensitivity DNA Stains ........................... 712
   21.3 DNA Hybridization ..................................... 715
   21.4 Molecular Beacons ..................................... 720
   21.5 Aptamers .............................................. 724
   21.6 Multiplexed Microbead Arrays: Suspension Arrays ....... 726
   21.7 Fluorescence In-Situ Hybridization .................... 727
   21.8 Multicolor FISH and Spectral Karyotyping .............. 730
   21.9 DNA Arrays ............................................ 732
   References ................................................. 734
   Problems ................................................... 740

22 Fluorescence-Lifetime Imaging Microscopy
   22.1 Early Methods for Fluorescence-Lifetime Imaging ....... 743
   22.2 Lifetime Imaging of Calcium Using Quin-2 .............. 744
   22.3 Examples of Wide-Field Frequency-Domain FLIM .......... 746
   22.4 Wide-Field FLIM Using a Gated-Image Intensifier ....... 747
   22.5 Laser Scanning TCSPC FLIM ............................. 748
   22.6 Frequency-Domain Laser Scanning Microscopy ............ 750
   22.7 Conclusions ........................................... 752
   References ................................................. 752
   Additional Reading on Fluorescence-Lifetime Imaging
   Microscopy ................................................. 753
   Problem .................................................... 755

23 Single-Molecule Detection
   23.1 Detectability of Single Molecules ..................... 759
   23.2 Total Internal Reflection and Confocal Optics ......... 760
   23.3 Optical Configurations for SMD ........................ 762
   23.4 Instrumentation for SMD ............................... 764
   23.5 Single-Molecule Photophysics .......................... 768
   23.6 Biochemical Applications of SMD ....................... 770
   23.7 Single-Molecule Resonance Energy Transfer ............. 773
   23.8 Single-Molecule Orientation and Rotational Motions .... 775
   23.9 Time-Resolved Studies of Single Molecules ............. 779
   23.10 Biochemical Applications ............................. 780
   23.11 Advanced Topics in SMD ............................... 784
   23.12 Additional Literature on SMD ......................... 788
   References ................................................. 788
   Additional References on Single-Molecule Detection ......... 791
   Problem .................................................... 795

24 Fluorescence Correlation Spectroscopy
   24.1 Principles of Fluorescence Correlation
        Spectroscopy .......................................... 798
   24.2 Theory of FCS ......................................... 800
   24.3 Examples of FCS Experiments ........................... 805
   24.4 Applications of FCS to Bioaffinity Reactions .......... 807
   24.5 FCS in Two Dimensions: Membranes ...................... 810
   24.6 Effects of Intersystem Crossing ....................... 815
   24.7 Effects of Chemical Reactions ......................... 816
   24.8 Fluorescence Intensity Distribution Analysis .......... 817
   24.9 Time-Resolved FCS ..................................... 819
   24.10 Detection of Conformational Dynamics
         in Macromolecules .................................... 820
   24.11 FCS with Total Internal Reflection ................... 821
   24.12 FCS with Two-Photon Excitation ....................... 822
   24.13 Dual-Color Fluorescence Cross-Correlation
         Spectroscopy ......................................... 823
   24.14 Rotational Diffusion and Photo Antibunching .......... 828
   24.15 Flow Measurements Using FCS .......................... 830
   24.16 Additional References on FCS ......................... 832
   References ................................................. 832
   Additional References to FCS and Its Applications .......... 837
   Problems ................................................... 840

25 Radiative Decay Engineering: Metal-Enhanced Fluorescence
   25.1 Radiative Decay Engineering ........................... 841
   25.2 Review of Metal Effects on Fluorescence ............... 843
   25.3 Optical Properties of Metal Colloids .................. 845
   25.4 Theory for Fluorophore-Colloid Interactions ........... 846
   25.5 Experimental Results on Metal-Enhanced
        Fluorescence .......................................... 848
   25.6 Distance-Dependence of Metal-Enhanced Fluorescence .... 851
   25.7 Applications of Metal-Enhanced Fluorescence ........... 851
   25.8 Mechanism of MEF ...................................... 855
   25.9 Perspective on RET .................................... 856
   References ................................................. 856
   Problem .................................................... 859

26 Radiative Decay Engineering: Surface Plasmon-Coupled
   Emission
   26.1 Phenomenon of SPCE .................................... 861
   26.2 Surface-Plasmon Resonance ............................. 861
   26.3 Expected Properties of SPCE ........................... 865
   26.4 Experimental Demonstration of SPCE .................... 865
   26.5 Applications of SPCE .................................. 867
   26.6 Future Developments in SPCE ........................... 868
   References ................................................. 870

Appendix I.   Corrected Emission Spectra ...................... 873
Appendix II.  Fluorescent Lifetime Standards .................. 883
Appendix III. Additional Reading .............................. 889

Index ......................................................... 923


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:22:40 2019. Размер: 30,140 bytes.
Посещение N 3337 c 04.10.2011