Mohammadi B. Applied shape optimization for fluids (Oxford; New York, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMohammadi B. Applied shape optimization for fluids / B.Mohammadi, O.Pironneau. - 2nd ed. - Oxford; New York: Oxford University Press, 2010. - xiv, 277 p.: ill. - (Numerical mathematics and scientific computation). - Incl. bibl. ref. - Ind.: p.275-277. - ISBN 078-0-1-954690-9
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
1  Introduction ................................................. 1
2  Optimal shape design ......................................... 6
   2.1  Introduction ............................................ 6
   2.2  Examples ................................................ 7
        2.2.1  Minimum weight of structures ..................... 7
        2.2.2  Wing drag optimization ........................... 8
        2.2.3  Synthetic jets and riblets ...................... 11
        2.2.4  Stealth wings ................................... 12
        2.2.5  Optimal breakwater .............................. 15
        2.2.6  Two academic test cases: nozzle optimization .... 16
   2.3  Existence of solutions ................................. 17
        2.3.1  Topological optimization ........................ 17
        2.3.2  Sufficient conditions for existence ............. 18
   2.4  Solution by optimization methods ....................... 19
        2.4.1  Gradient methods ................................ 19
        2.4.2  Newton methods .................................. 20
        2.4.3  Constraints ..................................... 21
        2.4.4  A constrained optimization algorithm ............ 22
   2.5  Sensitivity analysis ................................... 22
        2.5.1  Sensitivity analysis for the nozzle problem ..... 25
        2.5.2  Numerical tests with freefem++ .................. 27
   2.6  Discretization with triangular elements ................ 28
        2.6.1  Sensitivity of the discrete problem ............. 30
   2.7  Implementation and numerical issues .................... 33
        2.7.1  Independence from the cost function ............. 33
        2.7.2  Addition of geometrical constraints ............. 34
        2.7.3  Automatic differentiation ....................... 34
   2.8  Optimal design for Navier-Stokes flows ................. 35
        2.8.1  Optimal shape design for Stokes flows ........... 35
        2.8.2  Optimal shape design for Navier-Stokes flows .... 36
   References .................................................. 37
3  Partial differential equations for fluids ................... 41
   3.1  Introduction ........................................... 41
   3.2  The Navier-Stokes equations ............................ 41
        3.2.1  Conservation of mass ............................ 41
        3.2.2  Conservation of momentum ........................ 41
        3.2.3  Conservation of energy and and the law of
               state ........................................... 42
   3.3  Inviscid flows ......................................... 43
   3.4  Incompressible flows ................................... 44
   3.5  Potential flows ........................................ 44
   3.6  Turbulence modeling .................................... 46
        3.6.1  The Reynolds number ............................. 46
        3.6.2  Reynolds equations .............................. 46
        3.6.3  The к - ε model ................................. 47
   3.7  Equations for compressible flows in conservation
        form ................................................... 48
        3.7.1  Boundary and initial conditions ................. 50
   3.8  Wall laws .............................................. 51
        3.8.1  Generalized wall functions for u ................ 51
        3.8.2  Wall function for the temperature ............... 53
        3.8.3  к and ε ......................................... 54
   3.9  Generalization of wall functions ....................... 54
        3.9.1  Pressure correction ............................. 54
        3.9.2  Corrections on adiabatic walls for
               compressible flows .............................. 55
        3.9.3  Prescribing ρω .................................. 56
        3.9.4  Correction for the Reichardt law ................ 57
   3.10 Wall functions for isothermal walls .................... 58
   References .................................................. 60
4  Some numerical methods for fluids ........................... 61
   4.1  Introduction ........................................... 61
   4.2  Numerical methods for compressible flows ............... 61
        4.2.1  Flux schemes and upwinded schemes ............... 61
        4.2.2  A FEM-FVM discretization ........................ 62
        4.2.3  Approximation of the convection fluxes .......... 63
        4.2.4  Accuracy improvement ............................ 64
        4.2.5  Positivity ...................................... 64
        4.2.6  Time integration ................................ 65
        4.2.7  Local time stepping procedure ................... 66
        4.2.8  Implementation of the boundary conditions ....... 66
        4.2.9  Solid walls: transpiration boundary condition ... 67
        4.2.10 Solid walls: implementation of wall laws ........ 67
   4.3  Incompressible flows ................................... 68
        4.3.1  Solution by a projection scheme ................. 69
        4.3.2  Spatial discretization .......................... 70
        4.3.3  Local time stepping ............................. 71
        4.3.4  Numerical approximations for the k - ε
               equations ....................................... 71
   4.4  Mesh adaptation ........................................ 72
        4.4.1  Delaunay mesh generator ......................... 72
        4.4.2  Metric definition ............................... 73
        4.4.3  Mesh adaptation for unsteady flows .............. 75
   4.5  An example of adaptive unsteady flow calculation ....... 77
   References .................................................. 78
5  Sensitivity evaluation and automatic differentiation ........ 81
   5.1  Introduction ........................................... 81
   5.2  Computations of derivatives ............................ 83
        5.2.1  Finite differences .............................. 83
        5.2.2  Complex variables method ........................ 83
        5.2.3  State equation linearization .................... 84
        5.2.4  Adjoint method .................................. 84
        5.2.5  Adjoint method and Lagrange multipliers ......... 85
        5.2.6  Automatic differentiation ....................... 86
        5.2.7  A class library for the direct mode ............. 88
   5.3  Nonlinear PDE and AD ................................... 92
   5.4  A simple inverse problem ............................... 94
   5.5  Sensitivity in the presence of shocks ................. 101
   5.6  A shock problem solved by AD .......................... 103
   5.7  Adjoint variable and mesh adaptation .................. 104
   5.8  Tapenade .............................................. 106
   5.9  Direct and reverse modes of AD ........................ 106
   5.10 More on FAD classes ................................... 109
   References ................................................. 113
6  Parameterization and implementation issues ................. 116
   6.1  Introduction .......................................... 116
   6.2  Shape parameterization and deformation ................ 116
        6.2.1  Deformation parameterization ................... 117
        6.2.2  CAD-based ...................................... 117
        6.2.3  Based on a set of reference shapes ............. 117
        6.2.4  CAD-free ....................................... 118
        6.2.5  Level set ...................................... 122
   6.3  Handling domain deformations .......................... 127
        6.3.1  Explicit deformation ........................... 128
        6.3.2  Adding an elliptic system ...................... 129
        6.3.3  Transpiration boundary condition ............... 129
        6.3.4  Geometrical constraints ........................ 131
   6.4  Mesh adaption ......................................... 133
   6.5  Fluide-structure coupling ............................. 136
   References ................................................. 138
7  Local and global optimization .............................. 140
   7.1  Introduction .......................................... 140
   7.2  Dynamical systems ..................................... 140
        7.2.1  Examples of local search algorithms ............ 140
   7.3  Global optimization ................................... 142
        7.3.1  Recursive minimization algorithm ............... 143
        7.3.2  Coupling dynamical systems and distributed
               computing ...................................... 144
   7.4  Multi-objective optimization .......................... 145
        7.4.1  Data mining for multi-objective optimization ... 148
   7.5  Link with genetic algorithms .......................... 150
   7.6  Reduced-order modeling and learning ................... 153
        7.6.1  Data interpolation ............................. 154
   7.7  Optimal transport and shape optimization .............. 158
   References ................................................. 161
8  Incomplete sensitivities ................................... 164
   8.1  Introduction .......................................... 164
   8.2  Efficiency with AD .................................... 165
        8.2.1  Limitations when using AD ...................... 165
        8.2.2  Storage strategies ............................. 166
        8.2.3  Key points when using AD ....................... 167
   8.3  Incomplete sensitivity ................................ 168
        8.3.1  Equivalent boundary condition .................. 168
        8.3.2  Examples with linear state equations ........... 169
        8.3.3  Geometric pressure estimation .................. 171
        8.3.4  Wall functions ................................. 172
        8.3.5  Multi-level construction ....................... 172
        8.3.6  Reduced order models and incomplete
               sensitivities .................................. 173
        8.3.7  Redefinition of cost functions ................. 174
        8.3.8  Multi-criteria problems ........................ 175
        8.3.9  Incomplete sensitivities and the Hessian ....... 175
   8.4  Time-dependent flows .................................. 176
        8.4.1  Model problem .................................. 178
        8.4.2  Data mining and adjoint calculation ............ 181
   References ................................................. 183
9  Consistent approximations and approximate gradients ........ 184
   9.1  Introduction .......................................... 184
   9.2  Generalities .......................................... 184
   9.3  Consistent approximations ............................. 186
        9.3.1  Consistent approximation ....................... 187
        9.3.2  Algorithm: conceptual .......................... 187
   9.4  Application to a control problem ...................... 188
        9.4.1  Algorithm: control with mesh refinement ........ 189
        9.4.2  Verification of the hypothesis ................. 189
        9.4.3  Numerical example .............................. 190
   9.5  Application to optimal shape design ................... 190
        9.5.1  Problem statement .............................. 191
        9.5.2  Discretization ................................. 192
        9.5.3  Optimality conditions: the continuous case ..... 192
        9.5.4  Optimality conditions: the discrete case ....... 193
        9.5.5  Definition of θh ............................... 194
        9.5.6  Implementation trick ........................... 195
        9.5.7  Algorithm: OSD with mesh refinement ............ 195
        9.5.8  Orientation .................................... 196
        9.5.9  Numerical example .............................. 196
        9.5.10 A nozzle optimization .......................... 197
        9.5.11 Theorem ........................................ 199
        9.5.12 Numerical results .............................. 200
        9.5.13 Drag reduction for an airfoil with mesh
               adaptation ..................................... 200
   9.6  Approximate gradients ................................. 203
        9.6.1  A control problem with domain decomposition .... 204
        9.6.2  Algorithm ...................................... 205
        9.6.3  Numerical results .............................. 207
   9.7  Conclusion ............................................ 209
   9.8  Hypotheses in Theorem 9.3.2.1 ......................... 209
        9.8.1  Inclusion ...................................... 209
        9.8.2  Continuity ..................................... 209
        9.8.3  Consistency .................................... 209
        9.8.4  Continuity of θ ................................ 209
        9.8.5  Continuity of θhh) ........................... 210
        9.8.6  Convergence .................................... 210
   References ................................................. 210
10 Numerical results on shape optimization .................... 212
   10.1 Introduction .......................................... 212
   10.2 External flows around airfoils ........................ 213
   10.3 Four-element airfoil optimization ..................... 213
   10.4 Sonic boom reduction .................................. 215
   10.5 Turbomachines ......................................... 217
        10.5.1 Axial blades ................................... 219
        10.5.2 Radial blades .................................. 222
   10.6 Business jet: impact of state evaluations ............. 225
   References ................................................. 225
11 Control of unsteady flows .................................. 227
   11.1 Introduction .......................................... 227
   11.2 A model problem for passive noise reduction ........... 228
   11.3 Control of aerodynamic instabilities around rigid
        bodies ................................................ 229
   11.4 Control in multi-disciplinary context ................. 229
        11.4.1 A model problem ................................ 230
        11.4.2 Coupling strategies ............................ 236
        11.4.3 Low-complexity structure models ................ 237
   11.5 Stability, robustness, and unsteadiness ............... 241
   11.6 Control of aeroelastic instabilities .................. 244
   References ................................................. 245
12 From airplane design to microfluidics ...................... 246
   12.1 Introduction .......................................... 246
   12.2 Governing equations for microfluids ................... 247
   12.3 Stacking .............................................. 247
   12.4 Control of the extraction of infinitesimal
        quantities ............................................ 249
   12.5 Design of microfluidic channels ....................... 249
        12.5.1 Reduced models for the flow .................... 255
   12.6 Microfluidic mixing device for protein folding ........ 255
   12.7 Flow equations for microfluids ........................ 259
        12.7.1 Coupling algorithm ............................. 260
   References ................................................. 261
13 Topological optimization for fluids ........................ 263
   13.1 Introduction .......................................... 263
   13.2 Dirichlet conditions on a shrinking hole .............. 264
        13.2.1 An example in dimension 2 ...................... 264
   13.3 Solution by penalty ................................... 265
        13.3.1 A semi-analytical example ...................... 267
   13.4 Topological derivatives for fluids .................... 268
        13.4.1 Application .................................... 268
   13.5 Perspective ........................................... 270
        References ............................................ 270
14 Conclusions and prospectives ............................... 272

Index ......................................................... 275


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:58 2019. Размер: 20,353 bytes.
Посещение N 1970 c 01.03.2011