Turro N.J. Principles of molecular photochemistry: an introduction (Sausalito, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаTurro N.J. Principles of molecular photochemistry: an introduction / N.J.Turro, V.Ramamurthy, J.C.Scaiano. - Sausalito: University Science Books, 2009. - xxi, 495 p.: ill. - Incl. bibl. ref. - Ind.: p.483-495. - ISBN 978-1-891389-57-3
 

Место хранения: 054 | Международный томографический центр CO РАН | Новосибирск

Оглавление / Contents
 
     Preface .................................................. xix

Chapter 1  Molecular Photochemistry of Organic Compounds:
           An Overview .......................................... 1

1.1  What Is Molecular Organic Photochemistry? .................. 1
1.2  Learning Molecular Organic Photochemistry through the
     Visualization of Molecular Structures and the Dynamics
     of Their Transformations ................................... 3
1.3  Why Study Molecular Organic Photochemistry? ................ 3
1.4  The Value of Pictorial Representations and Visualization
     of Scientific Concepts ..................................... 5
1.5  Scientific Paradigms of Molecular Organic Photochemistry ... 6
1.6  Exemplars as Guides to the Experimental Study and
     Understanding of Molecular Organic Photochemistry .......... 7
1.7  The Paradigms of Molecular Organic Photochemistry .......... 8
1.8  Paradigms as Guides for Proceeding from the Possible
     to the Plausible to the Probable Photochemical Processes ... 8
1.9  Some Important Questions that Will Be Answered by the
     Paradigms of Molecular Organic Photochemistry ............. 10
1.10 From a Global Paradigm to the Everyday Working Paradigm ... 11
1.11 Singlet States, Triplet States, Diradicals, and
     Zwitterions: Key Structures Along a Photochemical
     Pathway from *R to P ...................................... 14
1.12 State Energy Diagrams: Electronic and Spin Isomers ........ 16
1.13 An Energy Surface Description of Molecular
     Photochemistry ............................................ 20
1.14 Structure, Energy, and Time: Molecular-Level Benchmarks
     and Calibration Points of Photochemical Processes ......... 25
1.15 Calibration Points and Numerical Benchmarks for
     Molecular Energetics ...................................... 26
1.16 Counting Photons .......................................... 28
1.17 Computing the Energy of a Mole of Photons for Light of
     Wavelength A. and Frequency ............................... 29
1.18 The Range of Photon Energies in the Electromagnetic
     Spectrum .................................................. 29
1.19 Calibration Points and Numerical Benchmarks for
     Molecular Dimensions and Time Scales ...................... 33
1.20 Plan of the Text .......................................... 36
     References ................................................ 38

Chapter 2  Electronic, Vibrational, and Spin Configurations
           of Electronically Excited States .................... 39

2.1  Visualization of the Electronically Excited Structures
     through the Paradigms of Molecular Organic
     Photochemistry ............................................ 39
2.2  Molecular Wave Functions and Molecular Structure .......... 42
2.3  The Born-Oppenheimer Approximation: A Starting Point for
     Approximate Molecular Wave Functions and Energies ......... 45
2.4  Important Qualitative Characteristics of Approximate
     Wave Functions ............................................ 47
2.5  From Postulates of Quantum Mechanics to Observations of
     Molecular Structure: Expectation Values and Matrix
     Elements .................................................. 49
2.6  The Spirit of the Use of Quantum Mechanical Wave
     Functions, Operators, and Matrix Elements ................. 50
2.7  From Atomic Orbitals, to Molecular Orbitals, to
     Electronic Configurations, to Electronic States ........... 51
2.8  Ground and Excited Electronic Configurations .............. 52
2.9  The Construction of Electronic States from Electronic
     Configurations ............................................ 56
2.10 Construction of Excited Singlet and Triplet States from
     Electronically Excited Configurations and the Pauli
     Principle ................................................. 56
2.11 Characteristic Configurations of Singlet and Triplet
     States: A Shorthand Notation .............................. 57
2.12 Electronic Energy Difference between Molecular Singlet
     and Triplet States of *R: Electron Correlation and the
     Electron Exchange Energy .................................. 58
2.13 Evaluation of the Relative Singlet and Triplet Energies
     and Singlet-Triplet Energy Gaps for Electronically
     Excited States (*R) of the Same Electronic
     Configuration ............................................. 60
2.14 Exemplars for the Singlet-Triplet Splittings in
     Molecular Systems ......................................... 63
2.15 Electronic Energy Difference between Singlet and Triplet
     States of Diradical Reactive Intermediates: Radical
     Pairs, I(RP), and Biradicals, I(BR) ....................... 66
2.16 A Model for Vibrational Wave Functions: The Classical
     Harmonic Oscillator ....................................... 69
2.17 The Quantum Mechanical Version of the Classical Harmonic
     Oscillator ................................................ 75
2.18 The Vibrational Levels of a Quantum Mechanical Harmonic
     Oscillator ................................................ 77
2.19 The Vibrational Wave Functions for a Quantum Mechanical
     Harmonic Oscillator: Visualization of the Wave Functions
     for Diatomic Molecules .................................... 78
2.20 A First-Order Approximation of the Harmonic-Oscillator
     Model: The Anharmonic Oscillator .......................... 80
2.21 Building Quantum Intuition for Using Wave Functions ....... 82
2.22 Electron Spin: A Model for Visualizing Spin Wave
     Functions ................................................. 82
2.23 A Vector Model of Electron Spin ........................... 85
2.24 Important Properties of Vectors ........................... 85
2.25 Vector Representation of Electron Spin .................... 86
2.26 Spin Multiplicities: Allowed Orientations of Electron
     Spins ..................................................... 87
2.27 Vector Model of Two Coupled Electron Spins: Singlet and
     Triplet States ............................................ 89
2.28 The Uncertainty Principle and Cones of Possible
     Orientations for Electron Spin ............................ 92
2.29 Cones of Possible Orientations for Two Coupled 1/2 Spins:
     Singlet and Triplet Cones of Orientation as a Basis for
     Visualizing the Interconversion of Spin States ............ 93
2.30 Making a Connection between Spin Angular Momentum and
     Magnetic Moments Due to Spin Angular Momentum ............. 94
2.31 The Connection between Angular Momentum and Magnetic
     Moments: A Physical Model for an Electron with Angular
     Momentum .................................................. 94
2.32 The Magnetic Moment of an Electron in a Bohr Orbit ........ 95
2.33 The Connection between Magnetic Moment and Electron
     Spin ...................................................... 97
2.34 Magnetic Energy Levels in an Applied Magnetic Field for
     a Classical Magnet ........................................ 99
2.35 Quantum Magnets in the Absence of Coupling Magnetic
     Fields ................................................... 101
2.36 Quantum Mechanical Magnets in a Magnetic Field:
     Constructing a Magnetic State Energy Diagram for Spins
     in an Applied Magnetic Field ............................. 102
2.37 Magnetic Energy Diagram for a Single Electron Spin and
     for Two Coupled Electron Spins ........................... 103
2.38 Magnetic Energy Diagrams Including the Electron
     Exchange Interaction, J .................................. 104
2.39 Interactions between Two Magnetic Dipoles: Orientation
     and Distance Dependence of the Energy of Magnetic
     Interactions ............................................. 106
2.40 Summary: Structure and Energetics of Electrons,
     Vibrations, and Spins .................................... 108
     References ............................................... 108

Chapter 3  Transitions between States: Photophysical
           Processes .......................................... 109

3.1  Transitions between States ............................... 109
3.2  A Starting Point for Modeling Transitions between
     States ................................................... 111
3.3  Classical Chemical Dynamics: Some Preliminary Comments ... 112
3.4  Quantum Dynamics: Transitions between States ............. 113
3.5  Perturbation* Theory ..................................... 113
3.6  The Spirit of Selection Rules for Transition
     Probabilities ............................................ 118
3.7  Nuclear Vibrational Motion As a Trigger for Electronic
     Transitions. Vibronic Coupling and Vibronic States:
     The Effect of Nuclear Motion on Electronic Energy and
     Electronic Structure ..................................... 119
3.8  The Effect of Vibrations on Transitions between
     Electronic States: The Franck-Condon Principle ........... 122
3.9  A Classical and Semiclassical Harmonic Oscillator Model
     of the Franck-Condon Principle for Radiative
     Transitions (R + hv → *R and *R → R + hv) ................ 124
3.10 A Quantum Mechanical Interpretation of the Franck-
     Condon Principle and Radiative Transitions ............... 128
3.11 The Franck-Condon Principle and Radiationless
     Transitions (*R → R + heat) .............................. 130
3.12 Radiationless and Radiative Transitions between Spin
     States of Different Multiplicity ......................... 134
3.13 Spin Dynamics: Classical Precession of the Angular
     Momentum Vector .......................................... 135
3.14 Precession of a Quantum Mechanical Magnet in the Cones
     of Possible Orientations ................................. 139
3.15 Important Characteristics of Spin Precession ............. 141
3.16 Some Quantitative Benchmark Relationships between the
     Strength of a Coupled Magnetic Field and Precessional
     Rates .................................................... 142
3.17 Transitions between Spin States: Magnetic Energies and
     Interactions ............................................. 144
3.18 The Role of Electron Exchange (J) in Coupling Electron
     Spins .................................................... 144
3.19 Couplings of a Spin with a Magnetic Field:
     Visualization of Spin Transitions and Intersystem
     Crossing ................................................. 146
3.20 Vector Model for Transitions between Magnetic States ..... 148
3.21 Spin-Orbit Coupling: A Dominant Mechanism for Inducing
     Spin Changes in Organic Molecules ........................ 149
3.22 Coupling of Two Spins with a Third Spin: T+ → S and
     T- → S Transitions ....................................... 157
3.23 Coupling Involving Two Correlated Spins: T0 → S
     Transitions .............................................. 158
3.24 Intersystem Crossing in Diradicals, I(D): Radical
     Pairs, I(RP), and Biradicals, I(BR) ...................... 159
3.25 Spin-Orbit Coupling in I(D): The Role of Relative
     Orbital Orientation ...................................... 160
3.26 Intersystem Crossing in Flexible Biradicals .............. 164
3.27 What All Transitions between States Have in Common ....... 166
     References ............................................... 167

Chapter 4  Radiative Transitions between Electronic States .... 169

4.1  The Absorption and Emission of Light by Organic
     Molecules ................................................ 169
4.2  The Nature of Light: A Series of Paradigm Shifts ......... 169
4.3  Black-Body Radiation and the "Ultraviolet Catastrophe"
     and Planck's Quantization of Light Energy: The Energy
     Quantum Is Postulated .................................... 172
4.4  The "Photoelectric Effect" and Einstein's Quantization
     of Light—The Quantum of Light: Photons ................... 173
4.5  If Light Waves Have the Properties of Particles, Do
     Particles Have the Properties of Waves? - de Broglie
     Integrates Matter and Light .............................. 176
4.6  Absorption and Emission Spectra of Organic Molecules:
     The State Energy Diagram as a Paradigm for Molecular
     Photophysics ............................................. 178
4.7  Some Examples of Experimental Absorption and Emission
     Spectra of Organic Molecules: Benchmarks ................. 178
4.8  The Nature of Light: From Particles to Waves to Wave
     Particles ................................................ 181
4.9  A Pictorial Representation of the Absorption of Light .... 181
4.10 The Interaction of Electrons with the Electric and
     Magnetic Forces of Light ................................. 182
4.11 A Mechanistic View of the Interaction of Light with
     Molecules: Light as a Wave ............................... 184
4.12 An Exemplar of the Interaction of Light with Matter:
     The Hydrogen Atom ........................................ 185
4.13 From the Classical Representation to a Quantum
     Mechanical Representation of Light Absorption by a
     Hydrogen Atom and a Hydrogen Molecule .................... 188
4.14 Photons as Massless Reagents ............................. 191
4.15 Relationship of Experimental Spectroscopic Quantities
     to Theoretical Quantities ................................ 194
4.16 The Oscillator Strength Concept .......................... 195
4.17 The Relationship between the Classical Concept of
     Oscillator Strength and the Quantum Mechanical
     Transition Dipole Moment ................................. 196
4.18 Examples of the Relationships of ε, ke0, τe0, <Ψ1|P2>,
     and f .................................................... 197
4.19 Experimental Tests of the Quantitative Theory Relating
     Emission and Absorption to Spectroscopic Quantities ...... 200
4.20 The Shapes of Absorption and Emission Spectra ............ 201
4.21 The Franck-Condon Principle and Absorption Spectra of
     Organic Molecules ........................................ 204
4.22 The Franck-Condon Principle and Emission Spectra ......... 208
4.23 The Effect of Orbital Configuration Mixing and
     Multiplicity Mixing on Radiative Transitions ............. 210
4.24 Experimental Exemplars of the Absorption and Emission
     of Light by Organic Molecules ............................ 214
4.25 Absorption, Emission, and Excitation Spectra ............. 215
4.26 Order of Magnitude Estimates of Radiative Transition
     Parameters ............................................... 218
4.27 Quantum Yields for Emission(*R → R + hv) ................. 223
4.28 Experimental Examples of Fluorescence Quantum Yields ..... 230
4.29 Determination of "State Energies" ES and ET from
     Emission Spectra ......................................... 234
4.30 Spin-Orbit Coupling and Spin-Forbidden Radiative
     Transitions .............................................. 235
4.31 Radiative Transitions Involving a Change in
     Multiplicity: S0 ↔ T(n,π*) and S0 ↔ T(π,π*) Transitions
     as Exemplars ............................................. 237
4.32 Experimental Exemplars of Spin-Forbidden Radiative
     Transitions: S0 → T1 Absorption and T1 → S0
     Phosphorescence .......................................... 240
4.33 Quantum Yields of Phosphorescence, ΦР: The T1 → S0 + hv
     Process .................................................. 243
4.34 Phosphorescence in Fluid Solution at Room Temperature .... 244
4.35 Absorption Spectra of Electronically Excited States ...... 245
4.36 Radiative Transitions Involving Two Molecules:
     Absorption Complexes and Exciplexes ...................... 247
4.37 Examples of Ground-State Charge-Transfer Absorption
     Complexes ................................................ 248
4.38 Excimers and Exciplexes .................................. 249
4.39 Exemplars of Excimers: Pyrene and Aromatic Compounds ..... 253
4.40 Exciplexes and Exciplex Emission ......................... 256
4.41 Twisted Intramolecular Charge-Transfer States ............ 257
4.42 Emission from "Upper" Excited Singlets and Triples:
     The Azulene Anomaly ...................................... 260
     References ............................................... 262

Chapter 5  Photophysical Radiationless Transitions ............ 265

5.1  Photophysical Radiationless Transitions As a Form of
     Electronic Relaxation .................................... 265
5.2  Radiationless Electronic Transitions as the Motion of
     a Representative Point on Electronic Energy Surfaces ..... 266
5.3  Wave Mechanical Interpretation of Radiationless
     Transitions between States ............................... 270
5.4  Radiationless Transitions and the Breakdown of the
     Born-Oppenheimer Approximation ........................... 275
5.5  An Essential Difference between Strongly Avoiding and
     Matching Surfaces ........................................ 275
5.6  Conical Intersections Near Zero-Order Surface
     Crossings ................................................ 275
5.7  Formulation of a Parameterized Model of Radiationless
     Transitions .............................................. 276
5.8  Visualization of Radiationless Transitions Promoted by
     Vibrational Motion; Vibronic Mixing ...................... 277
5.9  Intersystem Crossing: Visualization of Radiationless
     Transitions Promoted by Spin-Orbit Coupling .............. 281
5.10 Selection Rules for Intersystem Crossing in Molecules .... 282
5.11 The Relationship of Rates and Efficiencies of
     Radiationless Transitions to Molecular Structure:
     Stretching and Twisting as Mechanisms for Inducing
     Electronic Radiationless Transitions ..................... 287
5.12 The "Loose Bolt" and "Free-Rotor" Effects: Promoter and
     Acceptor Vibrations ...................................... 288
5.13 Radiationless Transitions between "Matching" Surfaces
     Separated by Large Energies .............................. 291
5.14 Factors That Influence the Rate of Vibrational
     Relaxation ............................................... 293
5.15 The Evaluation of Rate Constants for Radiationless
     Processes from Quantitative Emission Parameters .......... 296
5.16 Examples of the Estimation of Rates of Photophysical
     Processes from Spectroscopic Emission Data ............... 298
5.17 Internal Conversion (Sn → S1, S1 → S0, Tn → T1) ........... 300
5.18 The Relationship of Internal Conversion to the Excited-
     State Structure of *R .................................... 301
5.19 The Energy Gap Law for Internal Conversion (S1 → S0) ..... 303
5.20 The Deuterium Isotope Test for Internal Conversion ....... 304
5.21 Examples of Unusually Slow Sn → S1 Internal
     Conversion ............................................... 305
5.22 Intersystem Crossing from S1 → T1 ........................ 306
5.23 The Relationship Between S1 → T1 Intersystem Crossing
     to Molecular Structure ................................... 307
5.24 Temperature Dependence of S1 → Tn Intersystem
     Crossing ................................................. 308
5.25 Intersystem Crossing (T1 → S0) ........................... 309
5.26 The Relationship between T1 → S0 Intersystem Crossing
     and Molecular Structure .................................. 309
5.27 The Energy Gap Law for T1 → S0 Intersystem Crossing:
     Deuterium Isotope Effects on Interstate Crossings ........ 310
5.28 Perturbation of Spin-Forbidden Radiationless
     Transitions .............................................. 311
5.29 Internal Perturbation of Intersystem Crossing by the
     Heavy-Atom Effect ........................................ 312
5.30 External Perturbation of Intersystem Crossing ............ 313
5.31 The Relationship between Photophysical Radiationless
     Transitions and Photochemical Processes .................. 314
     References ............................................... 315

Chapter 6  A Theory of Molecular Organic Photochemistry ....... 319

6.1  Introduction to a Theory of Organic Photoreactions ....... 319
6.2  Potential Energy Curves and Surfaces ..................... 322
6.3  Movement of a Classical Representative Point on
     a Surface ................................................ 323
6.4  The Influence of Collisions and Vibrations on the
     Motion of the Representative Point on an Energy
     Surface .................................................. 325
6.5  Radiationless Transitions on PE Surfaces: Surface
     Maxima, Surface Minima, and Funnels on the Way from *R
     to P ..................................................... 325
6.6  A Global Paradigm for Organic Photochemical Reactions .... 326
6.7  Toward a General Theory of Organic Photochemical
     Reactions Based on Potential Energy Surfaces ............. 328
6.8  Determining Plausible Molecular Structures and
     Plausible Reaction Pathways of Photochemical Reactions ... 330
6.9  The Fundamental Surface Topologies for "Funnels" from
     Excited Surfaces to Ground-State Surfaces:
     Spectroscopic Minima, Extended Surface Touchings,
     Surface Matchings, Surface Crossings, and Surface
     Avoidings ................................................ 330
6.10 From 2D PE Curves to 3D PE Surfaces: The "Jump" from
     Two Dimensions to Three Dimensions ....................... 333
6.11 The Nature of Funnels Corresponding to Surface
     Avoidings and Surface Touchings Involved in Primary
     Photochemical Processes .................................. 334
6.12 "The Noncrossing Rule" and Its Violations: Conical
     Intersections and Their Visualization .................... 335
6.13 Some Important and Unique Properties of Conical
     Intersections ............................................ 337
6.14 Diradicaloid Structures and Diradicaloid Geometries ...... 341
6.15 Diradicaloid Structures Produced from Stretching a
     Bonds and Twisting re Bonds .............................. 344
6.16 An Exemplar for Diradicaloid Geometries Produced by
     σ-Bond Stretching and Bond Breaking: Stretching of the
     σ Bond of the Hydrogen Molecule .......................... 344
6.17 An Exemplar for Diradicaloid Geometries Produced by
     π-Bond Twisting and Breaking: Twisting of the π Bond of
     Ethylene ................................................. 348
6.18 Frontier Orbital Interactions As a Guide to the Lowest-
     Energy Pathways and Energy Barriers on Energy Surfaces ... 351
6.19 The Principle of Maximum Positive Orbital Overlap for
     Frontier Orbitals ........................................ 353
6.20 Stabilization by Orbital Interactions: Selection Rules
     Based on Maximum Positive Overlap and Minimum Energy
     Gap ...................................................... 353
6.21 Commonly Encountered Orbital Interactions in Organic
     Photoreactions ........................................... 354
6.22 Selection of Reaction Coordinates from Orbital
     Interactions for *R → I or *R → F → P Reactions:
     Exemplars of Concerted Photochemical Reactions and
     Photochemical Reactions That Involve Diradicaloid
     Intermediates ............................................ 357
6.23 Electronic Orbital and State Correlation Diagrams ........ 357
6.24 An Exemplar for Photochemical Concerted Pericyclic
     Reactions: The Electrocyclic Ring Opening of
     Cyclobutene and Ring Closure of 1,3-Butadiene ............ 358
6.25 Frontier Orbital Interactions Involving Radicals as
     Models for Half-Filled Molecular Orbitals ................ 359
6.26 Orbital and State Correlation Diagrams ................... 362
6.27 The Construction of Electron Orbital and State
     Correlation Diagrams for a Selected Reaction
     Coordinate ............................................... 364
6.28 Typical State Correlation Diagrams for Concerted
     Photochemical Pericyclic Reactions ....................... 364
6.29 Classification of Orbitals and States for the
     Electrocyclic Reactions of Cyclobutene and
     1,3-Butadiene: An Exemplar Concerted Reaction ............ 364
6.30 Concerted Photochemical Pericyclic Reactions and
     Conical Intersections .................................... 368
6.31 Typical State Correlation Diagrams for Nonconcerted
     Photoreactions: Reactions Involving Intermediates
     (Diradicals and Zwitterions) ............................. 368
6.32 Natural Orbital Correlation Diagrams ..................... 368
6.33 The Role of Small Barriers in Determining the
     Efficiencies of Photochemical Processes .................. 369
6.34 An Exemplar for the Photochemical Reactions of n,π*
     States ................................................... 370
6.35 The Symmetry Plane Assumption: Salem Diagrams ............ 372
6.36 An Exemplar State Correlation Diagram for n-Orbital
     Initiated Reaction of n,π* States: Hydrogen Abstraction
     via a Coplanar Reaction Coordinate ....................... 372
6.37 Extension of an Exemplar State Correlation Diagram to
     New Situations ........................................... 375
6.38 State Correlation Diagrams for α-Cleavage of Ketones ..... 375
6.39 A Standard Set of Plausible Primary Photoreactions for
     π,π* and n,π* States ..................................... 378
6.40 The Characteristic Plausible Primary Photochemistry
     Processes of π,π* States ................................. 378
6.41 The Characteristic Plausible Primary Photochemical
     Processes of n,π* States ................................. 380
6.42 Summary: Energy Surfaces as Reaction Graphs or Maps ...... 381
     References ............................................... 382

Chapter 7  Energy Transfer and Electron Transfer .............. 383

7.1  Introduction to Energy and Electron Transfer ............. 383
7.2  The Electron Exchange Interaction for Energy and
     Electron Transfer ........................................ 387
7.3  "Trivial" Mechanisms for Energy and Electron Transfer .... 391
7.4  Energy and Electron Transfer Mechanisms: Similarities
     and Differences .......................................... 396
7.5  Visualization of Energy Transfer by Dipole-Dipole
     Interactions: A Transmitter-Antenna Receiver-Antenna
     Mechanism ................................................ 399
7.6  Quantitative Aspects of the Förster Theory of Dipole-
     Dipole Energy Transfer ................................... 400
7.7  The Relationship of kET to Energy-Transfer Efficiency
     and Separation of Donor and Acceptor RDA ................. 404
7.8  Experimental Tests for Dipole-Dipole Energy Transfer ..... 406
7.9  Electron Exchange Processes: Energy Transfer Resulting
     from Collisions and Overlap of Electron Clouds ........... 411
7.10 Electron Exchange: An Orbital Overlap or Collision
     Mechanism of Energy Transfer ............................. 411
7.11 Electron-Transfer Processes Leading to Excited States .... 413
7.12 Triplet-Triplet Annihilation (TTA): A Special Case of
     Energy Transfer via Electron Exchange Interactions ....... 414
7.13 Electron Transfer: Mechanisms and Energetics ............. 416
7.14 Marcus Theory of Electron Transfer ....................... 424
7.15 A Closer Look at the Reaction Coordinate for Electron
     Transfer ................................................. 436
7.16 Experimental Verification of the Marcus Inverted Region
     for Photoinduced Electron Transfer ....................... 438
7.17 Examples of Photoinduced Electron Transfer That
     Demonstrate the Marcus Theory ............................ 441
7.18 Long-Distance Electron Transfer .......................... 441
7.19 Mechanisms of Long-Distance Electron Transfer: Through-
     Space and Through-Bond Interactions ...................... 442
7.20 A Quantitative Comparison of Triplet-Triplet Energy and
     Electron Transfer ........................................ 445
7.21 A Connection between Intramolecular Electron, Hole, and
     Triplet Transfer ......................................... 446
7.22 Photoinduced Electron Transfer between Donor and
     Acceptor Moieties Connected by a Flexible Spacer ......... 447
7.23 Experimental Observation of the Marcus Inversion Region
     for Freely Diffusing Species in Solution ................. 448
7.24 Control of the Rate and Efficiency of Electron-Transfer
     Separation by Controlling Changes in the Driving Force
     for Electron Transfer .................................... 449
7.25 Application of Marcus Theory to the Control of Product
     Distributions ............................................ 451
7.26 The Continuum of Structures from Charge Transfer to Free
     Ions: Excipfexes, Contact Ion Pairs, Solvent Separated
     Radical Ion Pairs, and Free Ion Pairs .................... 454
7.27 Comparison between Exciplexes and Contact Radical Ion
     Pairs .................................................... 458
7.28 Energy and Electron-Transfer Equilibria .................. 461
7.29 Energy-Transfer Equilibria ............................... 461
7.30 Electron-Transfer Equilibria in the Ground State ......... 463
7.31 Excited-State Electron-Transfer Equilibria ............... 463
7.32 Excited-State Formation Resulting from Electron-Transfer
     Reactions: Chemiluminescent Reactions .................... 464
7.33 Role of Molecular Diffusion in Energy and Electron-
     Transfer Processes in Solution ........................... 466
7.34 An Exemplar Involving Energy Transfer Controlled by
     Diffusion ................................................ 467
7.35 Estimation of Rate Constants for Diffusion Controlled
     Processes ................................................ 469
7.36 Examples of Near-Diffusion-Controlled Reactions:
     Reversible Formation of Collision Complexes .............. 472
7.37 The Cage Effect .......................................... 474
7.38 Distance-Time Relationships for Diffusion ................ 476
7.39 Diffusion Control in Systems Involving Charged Species ... 478
7.40 Summary .................................................. 479
     References ............................................... 479

Index ......................................................... 483


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:42 2019. Размер: 35,452 bytes.
Посещение N 2166 c 23.11.2010