McCormic M.E. Ocean engineering mechanics: with applications (Cambridge; New York, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMcCormic M.E. Ocean engineering mechanics: with applications. - Cambridge; New York: Cambridge University Press, 2010. - xxxvii, 580 p.: ill. - Incl. bibl. ref. - Ind.: p.575-580. - ISBN 978-0-521-85952-3
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
Preface ...................................................... xvii
Notation ...................................................... xix
1  Introduction ................................................. 1
   1.1  Generation of a Sea ..................................... 1
   1.2  Wind Classification and Sea State ....................... 4
   1.3  Ocean Engineering Literature ............................ 4
2  Review of Hydromechanics ..................................... 7
   2.1  Hydrostatics ............................................ 7
   Example 2.1: Pressure Hull Analysis .......................... 9
   2.2  Conservation of Mass ................................... 11
   Example 2.2: Flow Through a Manifold ........................ 13
   2.3  Rotational and Irrotational Flows ...................... 14
        A. Circulation ......................................... 15
        B. The Velocity Potential .............................. 16
        С. The Stream Function ................................. 17
        D. Superposition of Irrotational Flow Patterns ......... 19
   Example 2.3: Two-Dimensional Irrotational Flow about
                 a Circular Cylinder ........................... 19
   2.4  Conservation of Momentum and Energy .................... 21
   Example 2.4: Pressure Distribution on a Cylinder in
                an Irrotational Flow ........................... 22
   Example 2.5: Incipient Cavitation on a Vertical Circular
                Cylinder ....................................... 23
   2.5  Viscous Flows .......................................... 24
   Example 2.6: Drag and Vortex Shedding for an OTEC
                Cold-Water Pipe ................................ 27
   2.6  Hydrodynamics of Submerged Bodies ...................... 30
   Example 2.7: Flow about a Sphere ............................ 32
   Example 2.8: Flow about a Body of Revolution ................ 35
   2.7  Scaling ................................................ 37
   Example 2.9: Wave Power Conversion .......................... 42
   2.8  Closing Remarks ........................................ 43
3. Linear Surface Waves ........................................ 44
   3.1  Wind-Wave Generation ................................... 45
   3.2  Airy's Linear Wave Theory .............................. 47
   Example 3.1: Linearization .................................. 49
   3.3  Traveling or Progressive Waves ......................... 52
   Example 3.2: Wavelength Variation with Water Depth .......... 53
   Example 3.3: Wavelength Solution by Successive
                Approximations ................................. 54
   Example 3.4: Deep- and Shallow-Water Wavelength
                Approximations ................................. 55
   3.4  Standing Waves ......................................... 56
   Example 3.5: Standing Waves at a Seawall .................... 57
   3.5  Water Particle Motions ................................. 59
   3.6  The Wave Group ......................................... 61
   Example 3.6: Deep-Water Wave Group .......................... 63
   3.7  Wave Energy and Power .................................. 64
   Example 3.7: Deep- and Shallow-Water Wave Energy ............ 65
   Example 3.8: Deep- and Shallow-Water Wave Power ............. 66
   Example 3.9: Wave Power Conversion .......................... 67
   3.8  Shoaling ............................................... 68
   3.9  Closing Remarks ........................................ 72
4  Nonlinear Surface Waves ..................................... 73
   4.1  Nonlinear Wave Properties .............................. 74
   4.2  Stokes' Wave Theory .................................... 76
   Example 4.1: Deep- and Shallow-Water Free-Surface
                Profiles ....................................... 83
   Example 4.2: Free-Surface Displacement in Deep Water ........ 85
   4.3  Second-Order Particle Motions .......................... 86
   4.4  Water Particle Convection .............................. 88
   Example 4.3: Deep- and Shallow-Water Particle Convection
                Velocities ..................................... 89
   Example 4.4: Wave-Induced Spreading of a Surface Spill ...... 91
   4.5  Long Waves in Shallow Water ............................ 92
        A. Cnoidal Wave Theory ................................. 92
        B. Application of the Cnoidal Theory ................... 98
   Example 4.5: Application of the Cnoidal Theory ............. 100
        С. The Solitary Wave .................................. 101
   Example 4.6: Application of the Solitary Theory ............ 102
   4.6  Breaking Waves ........................................ 104
        A. Stokes' Deep-Water Analysis ........................ 104
        B. Miche's Formula: Breaking Waves in Waters of
           Finite Depth ....................................... 106
   Example 4.7: Theoretical, Deep-Water Breaking Wave
                Profiles ...................................... 107
        С. Breaking Solitary Waves ............................ 108
   Example 4.8: Breaking Height of a Shoaling Solitary
                Wave .......................................... 110
   4.7  Summary ............................................... 111
   4.8  Closing Remarks ....................................... 112
5. Random Seas ................................................ 113
   5.1  Introduction .......................................... 113
   5.2  Statistical Analysis of Measured Waves ................ 115
   Example 5.1: Cumulative Probability of Occurrence .......... 117
   Example 5.2: Probability Density and Most-Probable Wave
                Height ........................................ 118
        A. Average Wave Period and Wave Height ................ 119
        B. Mean-Square and Root-Mean-Square Wave Heights ...... 120
        С. Variance of the Wave Heights ....................... 120
   Example 5.3: Average Wave Period and Statistical Wave
                Heights ....................................... 120
        D. Significant Wave Height and Period ................. 120
   Example 5.4: Significant Wave Properties ................... 121
   5.3  Continuous Probability Distributions .................. 122
        A. Average Wave Period and Wave Height ................ 122
        B. Mean-Square Wave Height ............................ 123
        С. Variance of the Wave Heights ....................... 123
        D. Significant Wave Height ............................ 123
   5.4  Rayleigh Probability Distribution of Wave Heights ..... 124
   Example 5.5: Rayleigh Probability Density and
                Probability Functions ......................... 125
        A. Average Wave Height ................................ 125
        B. Probability of Exceedance .......................... 126
        C. Significant Wave Height ............................ 126
        D. Extreme Wave Height ................................ 127
   Example 5.6: Significant and Extreme Wave Heights .......... 127
   5.5  Weibull Probability Distribution of Wave Heights ...... 127
        Example 5.7: Weibull Probability Density and
                     Probability Functions .................... 129
   5.6  The Gaussian-Rayleigh Sea ............................. 129
        Example 5.8: Root-Mean-Square Wave Properties ......... 132
   5.7  Wave Spectral Density ................................. 133
        A. Point Spectra from Discrete Wave Data .............. 134
   Example 5.9: Wave Spectral Density from Discrete Wave
                Data .......................................... 135
        B. Empirical Expressions of the Point Spectral
           Density ............................................ 136
   5.8  Wind-Wave Spectra ..................................... 137
        A. Statistical Wave Periods ........................... 138
   Example 5.10: Statistical Wave Periods ..................... 139
        B. The Bretschneider Spectrum ......................... 140
        C. The Pierson-Moskowitz Wind-Wave Spectrum ........... 141
   Example 5.11: Comparison of Open-Ocean Wind-Wave
                 Spectra ...................................... 143
        D. The JONSWAP Spectra - the Fetch-Limited Sea ........ 144
        E. Wave Property Relationships from Empirical
           Wind-Wave Spectra .................................. 145
           (1)  Fully Developed, Open-Ocean Seas .............. 145
           (2)  Fetch-Limited Seas ............................ 147
           (3)  Duration-Limited Seas ......................... 148
   Example 5.12: Fetch-Limited and Duration-Limited Seas ...... 148
        F. Directional Properties of Wind-Generated Waves ..... 150
   Example 5.13: Wave Power Resource Determination for
                 a Directional Sea ............................ 153
   5.9  Long-Term Wave Statistics ............................. 156
   5.10 Wave Spectra in Waters of Finite Depth ................ 158
   Example 5.14: Bretschneider Spectra in Deep Water and
                 Waters of Finite Depth ....................... 159
   5.11 Closing Remarks ....................................... 160
6. Wave Modification and Transformation ....................... 161
   6.1  Wave Reflection from Vertical Barriers ................ 162
        A. Perfect Reflection of Linear, Monochromatic
           Waves .............................................. 164
   Example 6.1: Perfect Oblique Reflection .................... 166
        B. Imperfect Reflection of Direct, Monochromatic,
           Linear Waves - Healy's Formula ..................... 167
   Example 6.2: Direct Partial Reflection of Linear Waves ..... 168
        C. Reflection from a Vertical Porous Barrier .......... 169
   Example 6.3: Partial Reflection from a Porous
                Breakwater .................................... 170
   6.2  Reflection from Inclined Barriers - The Long-Wave
        Equations ............................................. 171
        A. The Long-Wave Equations ............................ 172
        B. Perfect Reflection from an Inclined Barrier ........ 174
   Example 6.4: Totally Reflected Waves on an Inclined
                Barrier ....................................... 178
        С. Nonreflecting Beaches .............................. 179
   Example 6.5: Shoaling on a Nonreflecting Beach ............. 180
        D. Reflection from a Bed of Intermediate Slope ........ 182
   Example 6.6: Convergence of the Reflection Coefficient
                and Phase Angle ............................... 184
   Example 6.7: Reflection from a Bed Transition .............. 185
   6.3  Refraction without Reflection - Snell's Law ........... 185
   Example 6.8: Shoaling and Refraction on a Straight,
                Parallel Contoured Beach ...................... 187
   6.4  Diffraction ........................................... 188
        A. Huygens' Principle ................................. 189
        B. Basic Equations and Boundary Conditions in
           the Analysis of Diffraction ........................ 190
        С. Modified Huygens-Fresnel Principle ................. 192
        D. Diffraction Analyses of Water Waves ................ 198
           (1)  Diffraction of Waves Directly Incident
                upon a Semi-Infinite Breakwater ............... 198
   Example 6.9: Diffraction Coefficients along the Leeward
                Sides of Rigid and Compliant Breakwaters ...... 203
           (2)  Diffraction of Waves Obliquely Incident
                upon a Semi-Infinite Breakwater ............... 204
   Example 6.10: Diffraction Coefficients along the Leeward
                Sides of a Rigid Breakwater ................... 205
           (3)  Diffraction of Waves by a System of
                Detached Breakwaters .......................... 207
   Example 6.11:Waves Directly Incident on a Gap between
                Semi-Infinite Breakwaters ..................... 211
   6.5  The Mild-Slope Equation ............................... 212
        A. Derivation of the Mild-Slope Equation .............. 213
        B. Application to a Straight and Parallel Contoured
           Bed ................................................ 216
   Example 6.12:Application of the Mild Slope to Pure
                Shoaling ...................................... 221
   6.6  Closing Remarks ....................................... 223
7. Waves in the Coastal Zone .................................. 224
   7.1  Coastal Zone Phenomena ................................ 225
   7.2  Empirical Analyses of Breaking Waves on Beaches ....... 226
   Example 7.1: Breaking Wave Properties over a Flat,
                Horizontal Bed ................................ 229
   Example 7.2: Breaking Wave Properties on a Beach of
                Uniform Slope - Empirical Equations ........... 230
   7.3  Surf Similarity ....................................... 231
        A. Breaking Waves ..................................... 232
        B. Wave Reflection .................................... 233
        C. Runup .............................................. 233
   Example 7.3: Breaking Wave Properties on a Beach of
                Uniform Slope - Surf Similarity ............... 234
   7.4  Surf Zone Hydromechanics - Radiation Stress ........... 234
        A. Radiation Stress ................................... 235
           (1)  Radiation Stress in the Direction of Wave
                Travel ........................................ 235
           (2)  Radiation Stress Transverse to the Wave
                Travel ........................................ 237
           (3)  Radiation Stress Matrix ....................... 237
   Example 7.4: Comparison of Radiation Stress in Deep and
                Shallow Waters ................................ 238
           (4)  Transformation of the Radiation Stress
                Matrix ........................................ 238
   Example 7.5: Normal and Diagonal Radiation Stress
                Components for a Breaking Wave ................ 240
        B. Wave Set-Up and Set-Down ........................... 240
   Example 7.6: Comparison of Theoretical and Experimental
                Wave Height, Water Depth, and Set-Down at
                a Break and Runup ............................. 245
   Example 7.7: Set-Up in the Surf Zone ....................... 246
        C. Longshore Velocity ................................. 246
           (1)  Negligible Lateral Mixing ..................... 251
           (2)  Negligible Bed Friction ....................... 251
           (3)  Combined Bed Friction and Lateral Mixing
                Effects ....................................... 251
   Example 7.8: Maximum Longshore Velocity .................... 254
        D. Average Longshore Volume Flow Rate ................. 255
   Example 7.9: Longshore Volume Transport Rate ............... 256
   Example 7.10:Longshore Sediment Transport Rate ............. 257
   7.5  Closing Remarks ....................................... 257
8. Coastal Engineering Considerations ......................... 258
   8.1  Shore Protection Methods .............................. 258
   Example 8.1: Planning a Groin Field ........................ 261
   8.2  Decision Process in Coastal Protection ................ 262
   Example 8.2: Decision Tree for Shoreline Erosion
                Abatement ..................................... 262
   8.3  Rubble-Mound Structures ............................... 263
        A. Stone Selection for Rubble-Mound Breakwaters ....... 265
           (1)  Armor Stone ................................... 265
           (2)  Shield Stone .................................. 265
           (3)  Foundation Stone .............................. 265
           (4)  Toe-Berm Stone ................................ 266
   Example 8.3: Preliminary Design of a Rubble-Mound
                Breakwater .................................... 267
   8.4  Reliability of a Rubble-Mound Structure ............... 268
   Example 8.4: Reliability of a Rubble-Mound Breakwater ...... 269
   Example 8.5: Weibull Reliability of a Rubble-Mound
                Breakwater .................................... 271
   8.5  Closing Remarks ....................................... 272
9  Wave-Induced Forces and Moments on Fixed Bodies ............ 273
   9.1  Wave-Induced Forces and Moments on a Seawall .......... 274
        A. Pressure, Force, and Moment Resulting from Direct
           Reflection of Linear Waves ......................... 274
   Example 9.1: Wave Force and Moment on a Seawall Due to
                Standing Linear Waves ......................... 276
        B. Pressure and Force Resulting from Direct
           Reflection of a Solitary Wave ...................... 276
   Example 9.2: Pressure Distribution on a Seawall beneath
                a Solitary Wave ............................... 279
   9.2  Wave-Induced Forces on Submerged and Surface-
        Piercing Bodies ....................................... 280
        A. The Concept of Added Mass .......................... 280
           (1)  Cylinders with Circular Cross-Sections ........ 282
           (2)  Cylinders with Noncircular Cross-Sections -
                Lewis Forms ................................... 283
   Example 9.3: Two Lewis Forms ............................... 286
   Example 9.4: Added Mass of a Noncircular Cylinder .......... 288
        B. Natures of Wave-Induced Forces on Circular
           Cylinders .......................................... 289
        C. Wave-Induced Drag Forces ........................... 290
        D. The Morison Equation ............................... 292
   Example 9.5: Force and Moment on a Vertical Circular Pile
                in Shallow Water .............................. 294
        E. Circular Cylinders of Large Diameter - The
           MacCamy-Fuchs Analysis ............................. 297
   Example 9.6: Force and Moment on a Cofferdam in Shallow-
                Water Linear Waves ............................ 303
        F. Mass Coefficient for a Circular Cylinder ........... 304
        G. Diffraction Force and Moment on a Rectangular
           Cylinder ........................................... 305
   Example 9.7: Force and Moment on a Square Cylinder in
                Shallow-Water Linear Waves .................... 307
        H. Truncated Circular Cylinder of Large Diameter ...... 307
           (1)  Approximations of the Horizontal Force and
                Resulting Moment .............................. 308
           (2)  Approximations of the Vertical Force and
                Resulting Moment .............................. 309
   Example 9.8: Wave-Induced Forces on a Spar Work Platform ... 311
           (3)  Garrett's Analysis ............................ 312
           (4)  Results of the Approximate and Garrett
                Forces ........................................ 322
        I. Scattering Effects of Large-Diameter Leg Arrays .... 324
   Example 9.9: Wave-Induced Forces on an In-Line, Two-Leg
                Platform ...................................... 332
   9.3  Wave-Induced Forces and Moments on Bodies in Random
        Seas .................................................. 334
        A. Spectral Nature of Wave-Induced Viscous-Pressure
           and Inertia Forces ................................. 336
   Example 9.10:Predicted and Measured Wave and Force
                Spectra on a Circular Pile .................... 338
        B. Probabilistic Nature of the Viscous-Pressure and
           Inertia Wave Forces ................................ 338
   Example 9.11:Probabilities of Occurrence for the Maximum
                Drag Force on a Circular Pile ................. 342
   Example 9.12:Most-Probable Maximum Force for the 100-Year
                Storm ......................................... 343
        C. Random Nature of Diffraction Forces on a Fixed,
           Vertical Circular Cylinder ......................... 345
   Example 9.13:Diffraction Forces on a Monolithic Gravity
                Structure ..................................... 346
   Example 9.14:Extreme Diffraction Forces on a Monolithic
                Gravity Structure ............................. 348
   9.4   Closing Remarks ...................................... 349
10 Introduction to Wave-Structure Interaction ................. 350
   10.1 Basic Concepts ........................................ 350
        A. Equations of Motion ................................ 351
        B. Added Mass and Radiation Damping ................... 352
        C. Equivalent Viscous Damping Coefficient ............. 354
        D. Steady-State Solution of the Heaving Equation ...... 356
   Example 10.1:Heaving Motion of a Can Buoy .................. 356
        E. Determination of Added Mass and Resonant Damping
           Coefficients in Calm Water ......................... 358
   Example 10.2:Experimental Determination of Heaving Added
                Mass and Damping Logarithmic Decrement
                Method ........................................ 360
        F. Bandwidth Determination of Damping in Wave-
           Induced Heaving Motions ............................ 361
   Example 10.3:Experimental Determination of Damping in
                Wave-Induced Heaving-Half-Power Bandwidth
                Method ........................................ 363
   Example 10.4:Experimental Determination of Component
                Damping Coefficients .......................... 364
   10.2  Power Take-Off ....................................... 365
   Example 10.5:Power Take-Off of a Heaving Circular
                Cylinder at Resonance ......................... 366
   10.3  Random Motions ....................................... 368
   Example 10.6:Root-Mean-Square Heaving Response of Under
                damped Motions of a Can Buoy in a Random
                Sea ........................................... 371
   Example 10.7:Root-Mean-Square and Extreme Heaving
                Amplitudes of Highly Damped Motions of
                a Can Buoy in a Random Sea .................... 372
   10.4  Closing Remarks ...................................... 375
11 Wave-Induced Motions of Floating Bodies .................... 376
   11.1  Hydrostatic Considerations - Initial Stability ....... 377
   Example 11.1:Roll Stability of a Can Buoy .................. 380
   11.2  Floating Body Motions ................................ 380
        A. Boundary Condition on the Body ..................... 381
   Example 11.2:Body Condition for a Semi-Submerged,
                Heaving Sphere ................................ 382
        B. Heaving and Pitching Equations of Motion ........... 383
        C. Introduction to Strip Theory ....................... 384
           (1)  Hydrostatic Restoring Force and Moment ........ 386
           (2)  Viscous Damping Force and Moment .............. 386
           (3)  Hydrodynamic Forces and Moments ............... 387
        D. Coupled Heaving and Pitching Equations of Motion ... 390
   11.3 Two-Dimensional Hydrodynamics - Vertical Body
        Motions ............................................... 392
        A. Strip Geometries - Lewis Forms ..................... 393
   Example 11.3:Lewis Ship-Shape Section (Strip) .............. 396
        B. Velocity Potentials ................................ 398
           (1)  Incident Wave Potential ....................... 398
           (2)  Vertical Motions of Lewis Forms - Velocity
                Potential and Stream Function ................. 399
   Example 11.4:Velocity Potential and Stream Function for
                a Heaving Circular Strip ...................... 401
           (3)  Velocity Potential for the Wave-Body
                Interaction ................................... 402
           (4)  Total Velocity Potential ...................... 402
        C. Hydrodynamic Pressures and Forces on the Strip
           in Deep Water ...................................... 402
           (1)  Wave-Induced Pressure and Force ............... 403
   Example 11.5:Wave-Induced Vertical Forces on Two Strip
                Geometries .................................... 405
           (2)  Motion-Induced Pressure and Force ............. 407
   Example 11.6:Spatial Variation of a Semicircular
                Sectional Area ................................ 408
   Example 11.7:Motion-Induced Vertical Forces on Two Strip
                Geometries .................................... 410
           (3)  Wave-Body Interaction Pressure and Force on
                a Strip ....................................... 411
   Example 11.8:Wave-Body Interaction Forces on Two Strip
                Geometries .................................... 413
        D. Radiation Damping .................................. 415
   Example 11.9:Radiation Damping Coefficients Using the
                YFF Formula ................................... 416
   Example 11.10:Radiation Damping Coefficient Using the
                Tasai Formula ................................. 417
   11.4 Coupled Heaving and Pitching Motions Based on Strip
        Theory ................................................ 419
   Example 11.11:Transverse Stability and Planar Motions
                of a Barge in Linear Waves .................... 422
   11.5 Experimental and Theoretical Hydrodynamic
        Coefficient Data ...................................... 431
        A. Modification of the Lewis Added-Mass Coefficients
           to Include Frequency Dependence .................... 431
        B. Vertical Motions of a Rectangular Section .......... 432
        C. Vertical Motions of a Semicircular Section ......... 433
   11.6 Singularity Method of Determining the Hydrodynamic
        Coefficients .......................................... 434
        A. The Source Pair .................................... 436
        B. Distributed Sources - Rectangular Strip ............ 438
           (1)  Alternative Infinite-Frequency Added Mass
                of a Heaving Rectangular Strip ................ 440
   Example 11.12:Alternative Expression for the Added Mass
                for a Heaving Rectangular Strip ............... 442
           (2)  Radiation Damping of a Heaving Rectangular
                Strip ......................................... 444
   Example 11.13:Radiation Damping Coefficient for a Heaving
                Rectangular Strip ............................. 445
   11.7 Two-Dimensional Haskind Force Relationships ........... 446
        A. Newman's Formulation ............................... 446
        B. Wave-Induced Vertical Force on Rectangular
           Section ............................................ 451
   Example 11.14:Wave-Induced Forces on a Heaving
                Rectangular Strip ............................. 451
   11.8 Closing Remarks ....................................... 452
12 Wave-Induced Motions of Compliant Structures ............... 453
   12.1 Compliant Structures .................................. 453
   12.2 Basic Mooring Configurations .......................... 455
        A. Taut Moorings ...................................... 455
   Example 12.1: Tension in a SeaStar Tether .................. 457
        B. Slack Moorings ..................................... 458
   Example 12.2:Effective Spring Constant for Slack Line ...... 461
   Example 12.3:Effective Spring Constant for a Barge
                Moored with Four Slack Lines .................. 464
   12.3 Soil-Structure Interactions ........................... 465
        A. Embedded Structures ................................ 468
           (1) Bending Deflection in the Plastic Zone ......... 470
           (2) Bending Deflection in the Elastic Zone ......... 471
           (3) Complete Bending Solution ...................... 471
           (4) Comparison of Analysis and Data ...............  473
        B. Spread Footings - Gravity Structures ............... 474
   12.4  Motions of a Tension-Leg Platform (TLP) .............. 476
        A. Tethers ............................................ 478
   Example 12.4:Effective Spring Constants for a TLP .......... 479
        B. Soil Reactions ..................................... 479
        С. Wave-Induced Forces ................................ 480
           (1)  Drag Force .................................... 481
           (2)  Diffraction Force ............................. 482
        D. Hydrodynamic Coefficients for a Spar ............... 483
           (1)  Heaving Added Mass and Radiation Damping ...... 484
   Example 12.5:Added-Mass and Radiation-Damping
                Coefficients for a Heaving Vertical
                Cylindrical Hull in Water of Finite Depth ..... 486
           (2)  Surging Added Mass and Radiation Damping ...... 486
        E. Surging Motions in Regular Seas .................... 489
   Example 12.6:Surging Motions of a TLP ...................... 491
        F. Surging Motions in Random Seas ..................... 495
   Example 12.7:Root-Mean-Square Surge Response of Motions
                of a TLP ...................................... 496
   Example 12.8:Spectral Density of the Surge Response of
                Motions of a TLP .............................. 497
   12.5  Motions of an Articulated-Leg Platform (ALP) ......... 498
         Example 12.9:Wave-Induced Motions of an ALP .......... 506
   12.6  Motions of Flexible Towers ........................... 509
        A. Effective Spring Constants ......................... 511
        B. Analysis of the Motions of a Flexible Offshore
           Tower (FOT) ........................................ 514
           (1)  Swaying Motions of a FOT ...................... 515
   Example 12.10:First Modal Swaying Frequency of a FOT ....... 517
   Example 12.11:First Modal Swaying Frequency of a Three-
                 Panel FOT .................................... 518
            (2)  Bending Motions of a TRAP .................... 519
   Example 12.12:Deflection of a TRAP in a Design Sea ......... 525
   12.7 Closing Remarks ....................................... 528
   Appendices ................................................. 529
        A. Bessel Functions ................................... 529
        B. Runga-Kutta Solution of Differential Equations ..... 530
        C. Green's Theorem .................................... 532
           C1. Three-Dimensional Green's Theorem .............. 532
           C2. Two-Dimensional Green's Theorem ................ 533
           C3. Green's Theorem Applied to an Irrotational
               Flow ........................................... 533
        D. Green's Function ................................... 534
           D1. Three-Dimensional Green's Function ............. 534
               (1)  Three-Dimensional Flow Source ............. 534
               (2)  Three-Dimensional Wave Source ............. 536
           D2. Two-Dimensional Green's Function ............... 536
        E. Solutions of Laplace's Equation .................... 537
           El. Cartesian Coordinates .......................... 538
           E2. Cylindrical Coordinates ........................ 539
        F. Fourier Transforms ................................. 540
        G. Lewis Sharp-Bilge Analysis ......................... 541
        H. Infinite-Frequency Added-Mass Expressions .......... 544
           HI. Two-Dimensional Added Mass ..................... 544
               (1)  Motions in an Infinite Liquid ............. 544
               (2)  Motions of a Rectangular Section in
                    Liquid with a Free Surface ................ 546
           H2. Three-Dimensional Added Mass ................... 547
               (1)  Flat Plate Motions in an Infinite
                    Liquid .................................... 547
               (2)  Motions of a Sphere in an Infinite
                    Liquid and beneath a Free Surface ......... 547
           H3. Frequency-Dependent Added Mass ................. 548

References .................................................... 549

Index ......................................................... 575


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:26 2019. Размер: 37,264 bytes.
Посещение N 1642 c 05.10.2010