Krugel E. The physics of interstellar dust (Bristol; Philadelphia, 2003). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKrügel E. The physics of interstellar dust. - Bristol; Philadelphia: Institute of Physics Pub., 2003. - xxiii, 559 p.: ill. - (Series in astronomy and astrophysics). - Ref.: p.549-551. - Ind.: p.552-559. - ISBN 0-7503-0861-3
 

Оглавление / Contents
 
Preface ....................................................... xix

1  The dielectric permeability .................................. 1
   1.1  Maxwell's equations ..................................... 1
        1.1.1  Electric field and magnetic induction ............ 1
        1.1.2  Electric polarization of the medium .............. 2
        1.1.3  The dependence of the dielectric permeability
               on direction and frequency ....................... 3
        1.1.4  The physical meaning of the electric 
               susceptibility Χ ................................. 4
        1.1.5  Magnetic polarization of the medium .............. 6
        1.1.6  The magnetic susceptibility ...................... 7
        1.1.7  Dielectrics and metals ........................... 7
        1.1.8  Free charges and polarization charges ............ 8
        1.1.9  The field equations .............................. 9
   1.2  Waves in a dielectric medium ........................... 10
        1.2.1  The wave equation ............................... 10
        1.2.2  The wavenumber .................................. 11
        1.2.3  The optical constant or refractive index ........ 12
        1.2.4  Energy dissipation of a grain in a variable 
               field ........................................... 13
   1.3  The harmonic oscillator ................................ 15
        1.3.1  The Lorentz model ............................... 15
        1.3.2  Free oscillations ............................... 16
        1.3.3  The general solution to the oscillator
               equation ........................................ 17
        1.3.4  Dissipation of energy in a forced oscillation ... 18
        1.3.5  Dissipation of energy in a free oscillation ..... 19
        1.3.6  The plasma frequency ............................ 20
        1.3.7  Dispersion relation of the dielectric 
               permeability .................................... 20
   1.4  The harmonic oscillator and light ...................... 22
        1.4.1  Attenuation and refraction of light ............. 23
        1.4.2  Retarded potentials of a moving charge .......... 24
        1.4.3  Emission of an harmonic oscillator .............. 26
        1.4.4  Radiation of higher order ....................... 27
        1.4.5  Radiation damping ............................... 28
        1.4.6  The cross section of an harmonic oscillator ..... 29
        1.4.7  The oscillator strength ......................... 30
        1.4.8  The natural linewidth ........................... 31
   1.5  Waves in a conducting medium ........................... 32
        1.5.1  The dielectric permeability of a conductor ...... 33
        1.5.2  Conductivity and the Drude profile .............. 34
        1.5.3  Electromagnetic waves in a plasma with 
               a magnetic field ................................ 36
        1.5.4  Group velocity of electromagnetic waves in 
               a plasma ........................................ 37
   1.6  Polarization through orientation ....................... 38
        1.6.1  Polarization in a constant field ................ 38
        1.6.2  Polarization in a time-variable field ........... 39
        1.6.3  Relaxation after switching off the field ........ 40
        1.6.4  The dielectric permeability in Debye 
               relaxation ...................................... 41
2  How to evaluate grain cross sections ........................ 44
   2.1  Defining cross sections ................................ 44
        2.1.1  Cross section for scattering, absorption and 
               extinction ...................................... 44
        2.1.2  Cross section for radiation pressure ............ 46
        2.1.3  Efficiencies, mass and volume coefficients ...... 47
   2.2  The optical theorem .................................... 47
        2.2.1  The intensity of forward scattered light ........ 47
        2.2.2  The refractive index of a dusty medium .......... 50
   2.3  Mie theory for a sphere ................................ 51
        2.3.1  The generating function ......................... 52
        2.3.2  Separation of variables ......................... 52
        2.3.3  Series expansion of waves ....................... 54
        2.3.4  Expansion coefficients .......................... 54
        2.3.5  Scattered and absorbed power .................... 56
        2.3.6  Absorption and scattering efficiencies .......... 57
   2.4  Polarization and scattering ............................ 57
        2.4.1  The amplitude scattering matrix ................. 57
        2.4.2  Angle-dependence of scattering .................. 58
        2.4.3  The polarization ellipse ........................ 60
        2.4.4  Stokes parameters ............................... 61
        2.4.5  Stokes parameters of scattered light for 
               a sphere ........................................ 62
   2.5  The Kramers-Kronig relations ........................... 64
        2.5.1  Mathematical formulation of the relations ....... 64
        2.5.2  The electric susceptibility and causality ....... 66
        2.5.3  The Kramers-Kronig relation for the dielectric
               permeability .................................... 67
        2.5.4  Extension to metals ............................. 67
        2.5.5  Dispersion of the magnetic susceptibility ....... 68
        2.5.6  Three corollaries of the KK relation ............ 69
   2.6  Composite grains ....................................... 71
        2.6.1  Effective medium theories ....................... 72
        2.6.2  Garnett's mixing rule ........................... 73
        2.6.3  The mixing rule of Bruggeman .................... 74
        2.6.4  Composition of grains in protostellar cores ..... 74
        2.6.5  How size, ice and porosity change 
               the absorption coefficient ...................... 76
3  Very small  and very big particles .......................... 80
   3.1  Tiny spheres ........................................... 80
        3.1.1  When is a particle in the Rayleigh limit? ....... 80
        3.1.2  Efficiencies of small spheres from Mie theory ... 81
        3.1.3  A dielectric sphere in a constant electric 
               field ........................................... 82
        3.1.4  Scattering and absorption in the electrostatic
               approximation ................................... 84
        3.1.5  Polarization and angle-dependent scattering ..... 85
        3.1.6  Small-size effects beyond Mie theory ............ 86
   3.2  A small metallic sphere in a magnetic field ............ 87
        3.2.1  Slowly varying field ............................ 87
        3.2.2  The magnetic polarizability ..................... 89
        3.2.3  The penetration depth ........................... 89
        3.2.4  Limiting values of the magnetic 
               polarizability .................................. 90
   3.3  Tiny ellipsoids ........................................ 90
        3.3.1  Elliptical coordinates .......................... 91
        3.3.2  An ellipsoid in a constant electric field ....... 92
        3.3.3  Cross section and shape factor .................. 93
        3.3.4  Randomly oriented ellipsoids .................... 95
        3.3.5  Pancakes and cigars ............................. 95
        3.3.6  Rotation about the axis of greatest moment of
               inertia ......................................... 97
   3.4  The fields inside a dielectric particle ................ 99
        3.4.1  Internal field and depolarization field ......... 99
        3.4.2  Depolarization field and the distribution of
               surface charges ................................ 100
        3.4.3  The local field at an atom ..................... 101
        3.4.4  The Clausius-Mossotti relation ................. 101
   3.5  Very large particles .................................. 103
        3.5.1  Babinet's theorem .............................. 103
        3.5.2  Reflection and transmission at a plane 
               surface ........................................ 104
        3.5.3  Huygens' principle ............................. 106
        3.5.4  Fresnel zones and a check on Huygens
               'principle ..................................... 109
        3.5.5  The reciprocity theorem ........................ 111
        3.5.6  Diffraction by a circular hole or a sphere ..... 111
        3.5.7  Diffraction behind a half-plane ................ 113
        3.5.8  Particles of small refractive index ............ 116
        3.5.9  X-ray scattering ............................... 117
4  Case studies of Mie calculus ............................... 119
   4.1  Efficiencies of bare spheres .......................... 119
        4.1.1  Pure scattering ................................ 119
        4.1.2  A weak absorber ................................ 120
        4.1.3  A strong absorber .............................. 122
        4.1.4  A metal sphere ................................. 123
        4.1.5  Efficiency versus cross section and volume 
               coefficient .................................... 123
        4.1.6  The atmosphere of the Earth .................... 126
   4.2  Scattering by bare spheres ............................ 127
        4.2.1  The scattering diagram ......................... 127
        4.2.2  The polarization of scattered light ............ 128
        4.2.3  The intensity of scattered light in 
               a reflection nebula ............................ 131
   4.3  Coated spheres ........................................ 132
   4.4  Surface modes in small grains ......................... 133
   4.5  Efficiencies of idealized dielectrics and metals ...... 136
        4.5.1  Dielectric sphere consisting of identical
               harmonic oscillators ........................... 136
        4.5.2  Dielectric sphere with Debye relaxation ........ 138
        4.5.3  Magnetic and electric dipole absorption of
               small metal spheres ............................ 139
        4.5.4  Efficiencies for Drude profiles ................ 141
        4.5.5  Elongated metallic particles ................... 142
5  Particle statistics ........................................ 145
   5.1  Boltzmann statistics .................................. 145
        5.1.1  The probability of an arbitrary energy 
               distribution ................................... 145
        5.1.2  The distribution of maximum probability ........ 146
        5.1.3  Partition function and population of energy 
               cells .......................................... 147
        5.1.4  The mean energy of harmonic oscillators ........ 149
        5.1.5  The Maxwellian velocity distribution ........... 149
   5.2  Quantum statistics .................................... 151
        5.2.1  The unit cell h3 of the phase space ............ 151
        5.2.2  Bosons and fermions ............................ 152
        5.2.3  Bose statistics ................................ 154
        5.2.4  Bose statistics for photons .................... 156
        5.2.5  Fermi statistics ............................... 157
        5.2.6  Ionization equilibrium and the Saha equation ... 158
   5.3  Thermodynamics ........................................ 160
        5.3.1  The ergodic hypothesis ......................... 160
        5.3.2  Definition of entropy and temperature .......... 162
        5.3.3  The canonical distribution ..................... 163
        5.3.4  Thermodynamic relations for a gas .............. 164
        5.3.5  Equilibrium conditions of the state 
               functions ...................................... 166
        5.3.6  Specific heat of a gas ......................... 168
        5.3.7  The work done by magnetization ................. 168
        5.3.8  Susceptibility and specific heat of magnetic
               substances ..................................... 169
   5.4  Blackbody radiation ................................... 170
        5.4.1  The Planck function ............................ 170
        5.4.2  Low-and high-frequency limit ................... 171
        5.4.3  Wien's displacement law and the Stefan-
               Boltzmann law .................................. 172
        5.4.4  The Planck function and harmonic oscillators ... 173
6  The radiative transition probability ....................... 175
   6.1  A charged particle in an electromagnetic field ........ 175
        6.1.1  The classical Hamiltonian ...................... 175
        6.1.2  The Hamiltonian of an electron in an 
               electromagnetic field .......................... 176
        6.1.3  The Hamilton operator in quantum mechanics ..... 177
        6.1.4  The dipole moment in quantum mechanics ......... 179
        6.1.5  The quantized harmonic oscillator .............. 179
   6.2  Small perturbations ................................... 181
        6.2.1  The perturbation energy ........................ 181
        6.2.2  The transition probability ..................... 181
        6.2.3  Transition probability for a time-variable
               perturbation ................................... 182
   6.3  The Einstein coefficients A and В ..................... 183
        6.3.1  Induced and spontaneous transitions ............ 183
        6.3.2  Selection rules and polarization rules ......... 186
        6.3.3  Quantization of the electromagnetic field ...... 186
        6.3.4  Quantum-mechanical derivation of A and В ....... 188
   6.4  Potential wells and tunneling ......................... 192
        6.4.1  Wavefunction of a particle in a constant
               potential ...................................... 192
        6.4.2  Potential walls and Fermi energy ............... 192
        6.4.3  Rectangular potential barriers ................. 194
        6.4.4  The double potential well ...................... 198
7  Structure and composition of dust .......................... 201
   7.1  Crystal structure ..................................... 201
        7.1.1  Translational symmetry ......................... 201
        7.1.2  Lattice types .................................. 203
        7.1.3  The reciprocal lattice ......................... 207
   7.2  Binding in crystals ................................... 207
        7.2.1  Covalent bonding ............................... 208
        7.2.2  Ionic bonding .................................. 209
        7.2.3  Metals ......................................... 211
        7.2.4  van der Waals forces and hydrogen bridges ...... 213
   7.3  Reddening by interstellar grains ...................... 214
        7.3.1  Stellar photometry ............................. 214
        7.3.2  The interstellar extinction curve .............. 216
        7.3.3  Two-color diagrams ............................. 219
        7.3.4  Spectral indices ............................... 220
        7.3.5    The mass absorption coefficient .............. 222
   7.4  Carbonaceous grains and silicate grains ............... 224
        7.4.1  Origin of the two major dust constituents ...... 224
        7.4.2  The bonding in carbon .......................... 225
        7.4.3  Carbon compounds ............................... 227
        7.4.4  Silicates ...................................... 232
        7.4.5  A standard set of optical constants ............ 233
   7.5  Grain sizes and optical constants ..................... 234
        7.5.1  The size distribution .......................... 234
        7.5.2  Collisional fragmentation ...................... 236
8  Dust radiation ............................................. 239
   8.1  Kirchhoff's law ....................................... 239
        8.1.1  The emissivity of dust ......................... 239
        8.1.2  Thermal emission of grains ..................... 240
        8.1.3  Absorption and emission in thermal
               equilibrium .................................... 241
        8.1.4  Equipartition of energy ........................ 242
   8.2  The temperature of big grains ......................... 243
        8.2.1  The energy equation ............................ 243
        8.2.2  Approximate absorption efficiency at infrared
               wavelengths .................................... 243
        8.2.3  Temperature estimates .......................... 245
        8.2.4  Relation between grain size and grain
               temperature .................................... 247
        8.2.5  Temperature of dust grains near a star ......... 248
        8.2.6  Dust temperatures from observations ............ 249
   8.3  The emission spectrum of big grains ................... 251
        8.3.1  Constant temperature and low optical depth ..... 251
        8.3.2  Constant temperature and arbitrary optical
               depth .......................................... 253
   8.4  Calorific properties of solids ........................ 254
        8.4.1  Normal coordinates ............................. 254
        8.4.2  Internal energy of a grain ..................... 256
        8.4.3  Standing waves in a crystal .................... 257
        8.4.4  The density of vibrational modes in 
               a crystal ...................................... 258
        8.4.5  Specific heat .................................. 259
        8.4.6  Two-dimensional lattices ....................... 261
   8.5  Temperature fluctuations of very small grains ......... 262
        8.5.1  The probability density P(T) ................... 263
        8.5.2  The transition matrix .......................... 263
        8.5.3  Practical considerations ....................... 265
        8.5.4  The stochastic time evolution of grain
               temperature .................................... 266
   8.6  The emission spectrum of very small grains ............ 268
        8.6.1  Small and moderate fluctuations ................ 268
        8.6.2  Strong fluctuations ............................ 270
        8.6.3  Temperature fluctuations and flux ratios ....... 272
9  Dust and its environment ................................... 275
   9.1  Grain surfaces ........................................ 275
        9.1.1  Gas accretion on grains ........................ 275
        9.1.2  Physical adsorption and chemisorption .......... 276
        9.1.3  The sticking probability ....................... 279
        9.1.4  Thermal hopping, evaporation and reactions
               with activation barrier ........................ 281
        9.1.5  Tunneling between surface sites ................ 283
        9.1.6  Scanning time .................................. 284
   9.2  Grain charge .......................................... 285
        9.2.1  Charge equilibrium in the absence of a UV
               radiation field ................................ 285
        9.2.2  The photoelectric effect ....................... 286
   9.3  Grain motion .......................................... 289
        9.3.1  Random walk .................................... 289
        9.3.2  The drag on a grain subjected to a constant 
               outer force .................................... 289
        9.3.3  Brownian motion of a grain ..................... 292
        9.3.4  The disorder time .............................. 293
        9.3.5  Laminar and turbulent friction ................. 295
        9.3.6  A falling rain drop ............................ 296
        9.3.7  The Poynting-Robertson effect .................. 297
   9.4  Grain destruction ..................................... 298
        9.4.1  Mass balance in the Milky Way .................. 298
        9.4.2  Destruction processes .......................... 299
   9.5  Grain formation ....................................... 301
        9.5.1  Evaporation temperature of dust ................ 301
        9.5.2  Vapor pressure of small grains ................. 304
        9.5.3  Critical saturation ............................ 305
        9.5.4  Equations for time-dependent homogeneous
               nucleation ..................................... 307
        9.5.5  Equilibrium distribution and steady-state 
               nucleation ..................................... 308
        9.5.6  Solutions to time-dependent homogeneous 
               nucleation ..................................... 311
        9.5.7  Similarity relations ........................... 316
10 Polarization ............................................... 319
        10.1 Efficiency of infinite cylinders ................. 319
        10.1.1 Normal incidence and picket fence alignment .... 319
        10.1.2 Oblique incidence .............................. 322
        10.1.3 Rotating cylinders ............................. 322
        10.1.4 Absorption efficiency as a function of
               wavelength ..................................... 325
   10.2 Linear polarization through extinction ................ 327
        10.2.1 Effective optical depth and degree of 
               polarization p(λ) .............................. 327
        10.2.2 The Serkowski curve ............................ 329
        10.2.3 Polarization p(λ) of infinite cylinders ........ 331
        10.2.4 Polarization p(λ) of ellipsoids in the 
               Rayleigh limit ................................. 334
        10.2.5 Polarization p(λ) of spheroids at optical 
               wavelengths .................................... 337
        10.2.6 Polarization and reddening ..................... 338
   10.3 Polarized emission .................................... 339
        10.3.1 The wavelength dependence of polarized 
               emission for cylinders ......................... 340
        10.3.2 Infrared emission of spheroids ................. 340
        10.3.3 Polarized emission versus polarized 
               extinction ..................................... 341
   10.4 Circular polarization ................................. 342
        10.4.1 The phase shift induced by grains .............. 343
        10.4.2 The wavelength dependence of circular
               polarization ................................... 344
11 Grain alignment ............................................ 347
   11.1 Grain rotation ........................................ 347
        11.1.1 Euler's equations for a rotating body .......... 347
        11.1.2 Symmetric tops ................................. 349
        11.1.3 Atomic magnet in a magnetic field .............. 351
        11.1.4 Rotational Brownian motion ..................... 351
        11.1.5 Suprathermal rotation .......................... 353
   11.2 Magnetic dissipation .................................. 355
        11.2.1 Diamagnetism ................................... 355
        11.2.2 Paramagnetism .................................. 355
        11.2.3 Ferromagnetism ................................. 357
        11.2.4 The magnetization of iron above and below
               the Curie point ................................ 358
        11.2.5 Paramagnetic dissipation: spin-spin and 
               spin-lattice relaxation ........................ 359
        11.2.6 The magnetic susceptibility for spin-lattice 
               relaxation ..................................... 360
        11.2.7 The magnetic susceptibility in spin-spin 
               relaxation ..................................... 362
   11.3 Magnetic alignment .................................... 364
        11.3.1 A rotating dipole in a magnetic field .......... 365
        11.3.2 Timescales for alignment and disorder .......... 367
        11.3.3 Super-paramagnetism ............................ 368
        11.3.4 Ferromagnetic relaxation ....................... 369
        11.3.5 Alignment of angular momentum with the axis 
               of greatest inertia ............................ 371
        11.3.6 Mechanical and magnetic damping ................ 372
   11.4 Non-magnetic alignment ................................ 373
        11.4.1 Gas streaming .................................. 373
        11.4.2 Anisotropic illumination ....................... 375
12 PAHs and spectral features of dust ......................... 377
   12.1 Thermodynamics of PAHs ................................ 377
        12.1.1 What are PAHs? ................................. 377
        12.1.2 Microcanonic emission of PAHs .................. 378
        12.1.3 The vibrational modes of anthracene ............ 379
        12.1.4 Microcanonic versus thermal level population ... 381
        12.1.5 Does an ensemble of PAHs have a temperature? ... 382
   12.2 PAH emission .......................................... 384
        12.2.1 Photoexcitation of PAHs ........................ 384
        12.2.2 Cutoff wavelength for electronic excitation .... 385
        12.2.3 Photo-destruction and ionization ............... 386
        12.2.4 Cross sections and line profiles of PAHs ....... 387
   12.3 Big grains and ices ................................... 388
        12.3.1 The silicate features and the band at 3.4
               μm ............................................. 389
        12.3.2 Icy grain mantles .............................. 389
   12.4 An overall dust model ................................. 390
        12.4.1 The three dust components ...................... 392
        12.4.2 Extinction coefficient in the diffuse medium ... 395
        12.4.3 Extinction coefficient in protostellar cores ... 395
13 Radiative transport ........................................ 396
   13.1 Basic transfer relations .............................. 396
        13.1.1 Radiative intensity and flux ................... 396
        13.1.2 The transfer equation and its formal
               solution ....................................... 398
        13.1.3 The brightness temperature ..................... 400
        13.1.4 The main-beam-brightness temperature of 
               a telescope .................................... 401
   13.2 Spherical clouds ...................................... 402
        13.2.1 Moment equations for spheres ................... 403
        13.2.2 Frequency averages ............................. 404
        13.2.3 Differential equations for the intensity ....... 405
        13.2.4 Integral equations for the intensity ........... 407
        13.2.5 Practical hints ................................ 407
   13.3 Passive disks ......................................... 409
        13.3.1 Radiative transfer in a plane parallel layer ... 409
        13.3.2 The grazing angle in an inflated disk .......... 414
   13.4 Galactic nuclei ....................................... 415
        13.4.1 Hot spots in a spherical stellar cluster ....... 415
        13.4.2 Low and high luminosity stars .................. 416
   13.5 Line radiation ........................................ 418
        13.5.1 Absorption coefficient and absorption 
               profile ........................................ 418
        13.5.2 The excitation temperature of a line ........... 419
        13.5.3 Radiative transfer in lines .................... 420
14 Diffuse matter in the Milky Way ............................ 425
   14.1 Overview of the Milky Way ............................. 425
        14.1.1 Global parameters .............................. 425
        14.1.2 The relevance of dust .......................... 426
   14.2 Molecular clouds ...................................... 427
        14.2.1 The CO molecule ................................ 428
        14.2.2 Population of levels in CO ..................... 431
        14.2.3 Molecular hydrogen ............................. 435
        14.2.4 Formation of molecular hydrogen on dust 
               surfaces ....................................... 435
   14.3 Clouds of atomic hydrogen ............................. 438
        14.3.1 General properties of the diffuse gas .......... 438
        14.3.2 The 21 cm line of atomic hydrogen .............. 439
        14.3.3 How the hyperfine levels of atomic hydrogen 
               are excited .................................... 440
        14.3.4 Gas density and temperature from the 21 cm 
               line ........................................... 443
        14.3.5 The deuterium hyperfine line ................... 444
        14.3.6 Electron density and magnetic field in 
               the diffuse gas ................................ 446
   14.4 HII regions ........................................... 448
        14.4.1 Ionization and recombination ................... 448
        14.4.2 Dust-free HII regions .......................... 450
        14.4.3 Dusty HII regions .............................. 453
        14.4.4 Bremsstrahlung ................................. 455
        14.4.5 Recombination lines ............................ 456
   14.5 Mass estimates of interstellar clouds ................. 457
        14.5.1 From optically thin CO lines ................... 457
        14.5.2 From the CO luminosity ......................... 458
        14.5.3 From dust emission ............................. 459
15 Stars and their formation .................................. 461
   15.1 Stars on and beyond the main sequence ................. 461
        15.1.1 Nuclear burning and the creation of elements ... 461
        15.1.2 The binding energy of an atomic nucleus ........ 463
        15.1.3 Hydrogen burning ............................... 465
        15.1.4 The 3a process ................................. 467
        15.1.5 Lifetime and luminosity of stars ............... 469
        15.1.6 The initial mass function ...................... 470
   15.2 Clouds near gravitational equilibrium ................. 471
        15.2.1 Virialized clouds .............................. 471
        15.2.2 Isothermal cloud in pressure equilibrium ....... 474
        15.2.3 Structure and stability of Ebert-Bonnor
               spheres ........................................ 475
        15.2.4 Free-fall of a gas ball ........................ 479
        15.2.5 The critical mass for gravitational 
               instability .................................... 480
        15.2.6 Implications of the Jeans criterion ............ 482
        15.2.7 Magnetic fields and ambipolar diffusion ........ 484
   15.3 Gravitational collapse ................................ 486
        15.3.1 The presolar nebula ............................ 486
        15.3.2 Hydrodynamic collapse simulations .............. 487
        15.3.3 Similarity solutions of collapse ............... 491
   15.4 Disks ................................................. 494
        15.4.1 Viscous laminar flows .......................... 494
        15.4.2 Dynamical equations of the thin accretion 
               disk ........................................... 497
        15.4.3 The Kepler disk ................................ 498
        15.4.4 Why a star accretes from a disk ................ 499
        15.4.5 The stationary accretion disk .................. 501
        15.4.6 Thea-disk ...................................... 501
        15.4.7 Disk heating by viscosity ...................... 503
16 Emission from young stars .................................. 505
   16.1 The earliest stages of star formation ................. 505
        16.1.1 Globules ....................................... 505
        16.1.2 Isothermal gravitationally-bound clumps ........ 506
   16.2 The collapse phase .................................... 508
        16.2.1 The density structure of a protostar ........... 508
        16.2.2 Dust emission from a solar-type protostar ...... 513
        16.2.3 Kinematics of protostellar collapse ............ 515
   16.3 Accretion disks ....................................... 518
        16.3.1 A flat blackbody disk .......................... 518
        16.3.2 A flat non-blackbody disk ...................... 521
        16.3.3 Radiative transfer in an inflated disk ......... 522
   16.4 Reflection nebulae .................................... 524
   16.5 Cold and warm dust in galaxies ........................ 526
   16.6 Starburst nuclei ...................................... 531
        16.6.1 Repetitive bursts of star formation ............ 531
        16.6.2 Dust emission from starburst nuclei ............ 535

Appendix A Mathematical formulae .............................. 539
Appendix В List of symbols .................................... 545
References .................................................... 549
Index.......................................................... 552


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:26 2019. Размер: 37,279 bytes.
Посещение N 1913 c 05.10.2010