Kernel methods for remote sensing data analysis (Chichester, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKernel methods for remote sensing data analysis / ed. by G.Camps-Valls, L.Bruzzone. - Chichester: Wiley, 2009. - xxix, 403 p., [6] p. of plates: ill. - Incl. bibl. ref. - Ind.: p.401-403. - ISBN 978-0-470-72211-4
 

Оглавление / Contents
 
About the editors ............................................ xiii
List of authors ................................................ xv
Preface ....................................................... xix
Acknowledgments ............................................. xxiii
List of symbols ............................................... xxv
List of abbreviations ....................................... xxvii

I.    Introduction .............................................. 1

1.  Machine learning techniques in remote sensing
    data analysis ............................................... 3
       Björn Waske, Mathieu Fauvel, Jon Atli Benediktsson
       and Jocelyn Chanussot
    1.1.  Introduction .......................................... 3
          1.1.1.  Challenges in remote sensing .................. 3
          1.1.2.  General concepts of machine learning .......... 4
          1.1.3.  Paradigms in remote sensing ................... 6
    1.2.  Supervised classification: algorithms and
          applications ......................................... 10
          1.2.1.  Bayesian classification strategy ............. 10
          1.2.2.  Neural networks .............................. 11
          1.2.3.  Support Vector Machines (SVM) ................ 13
          1.2.4.  Use of multiple classifiers .................. 17
    1.3.  Conclusion ........................................... 20
    Acknowledgments ............................................ 21
    References ................................................. 21

2.  An introduction to kernel learning algorithms .............. 25
       Peter V. Gehler and Bernhard Schölkopf
    2.1.  Introduction ......................................... 25
    2.2.  Kernels .............................................. 26
          2.2.1.  Measuring similarity with kernels ............ 26
          2.2.2.  Positive definite kernels .................... 27
          2.2.3.  Constructing the reproducing kernel
                  Hilbert space ................................ 29
          2.2.4.  Operations in RKHS ........................... 31
          2.2.5.  Kernel construction .......................... 32
          2.2.6.  Examples of kernels .......................... 33
    2.3.  The representer theorem .............................. 36
    2.4.  Learning with kernels ................................ 37
          2.4.1.  Support vector classification ................ 38
          2.4.2.  Support vector regression .................... 39
          2.4.3.  Gaussian processes ........................... 39
          2.4.4.  Multiple kernel learning ..................... 40
          2.4.5.  Structured prediction using kernels .......... 42
          2.4.6.  Kernel principal component analysis .......... 43
          2.4.7.  Applications of support vector algorithms .... 44
          2.4.8.  Available software ........................... 44
    2.5.  Conclusion ........................................... 45
    References ................................................. 45

II.  Supervised image classification ........................... 49

3.  The Support Vector Machine (SVM) algorithm for supervised
    classification of hyperspectral remote sensing data ........ 51
       J. Anthony Gualtieri
    3.1.  Introduction ......................................... 52
    3.2.  Aspects of hyperspectral data and its acquisition .... 53
    3.3.  Hyperspectral remote sensing and supervised
          classification ....................................... 56
    3.4.  Mathematical foundations of supervised
          classification ....................................... 57
          3.4.1.  Empirical risk minimization .................. 58
          3.4.2.  General bounds for a new risk minimization
                  principle .................................... 58
          3.4.3.  Structural risk minimization ................. 61
    3.5.  From structural risk minimization to a support
          vector machine algorithm ............................. 63
          3.5.1.  SRM for hyperplane binary classifiers ........ 63
          3.5.2.  SVM algorithm ................................ 64
          3.5.3.  Kernel method ................................ 66
          3.5.4.  Hyperparameters .............................. 68
          3.5.5.  A toy example ................................ 68
          3.5.6.  Multi-class classifiers ...................... 68
          3.5.7.  Data centring ................................ 69
    3.6.  Benchmark hyperspectral data sets .................... 70
          3.6.1.  The 4 class subset scene ..................... 70
          3.6.2.  The 16 class scene ........................... 71
          3.6.3.  The 9 class scene ............................ 71
    3.7.  Results .............................................. 72
          3.7.1.  SVM implementation ........................... 72
          3.7.2.  Effect of hyperparameter d ................... 72
          3.7.3.  Measure of accuracy of results ............... 73
          3.7.4.  Classifier results for the 4 class subset
                  scene and the 16 class full scene ............ 74
          3.7.5.  Results for the 9 class scene and
                  comparison of SVM with other classifiers ..... 74
          3.7.6.  Effect of training set size .................. 75
          3.7.7.  Effect of simulated noisy data ............... 75
    3.8.  Using spatial coherence .............................. 77
    3.9.  Why do SVMs perform better than other methods? ....... 78
    3.10. Conclusions .......................................... 79
    References ................................................. 79

4.  On training and evaluation of SVM for remote sensing
    applications ............................................... 85
       Giles M. Foody
    4.1.  Introduction ......................................... 85
    4.2.  Classification for thematic mapping .................. 86
    4.3.  Overview of classification by a SVM .................. 88
    4.4.  Training stage ....................................... 90
          4.4.1.  General recommendations on sample size ....... 91
          4.4.2.  Training a SVM ............................... 94
          4.4.3.  Summary on training .......................... 97
    4.5.  Testing stage ........................................ 97
          4.5.1.  General issues in testing .................... 98
          4.5.2.  Specific issues for SVM classification ...... 103
    4.6.  Conclusion .......................................... 103
    Acknowledgments ........................................... 104
    References ................................................ 104

5.  Kernel Fisher's Discriminant with heterogeneous kernels ... 111
       M. Murat Dundar and Glenn Fung
    5.1.  Introduction ........................................ 111
    5.2.  Linear Fisher's Discriminant ........................ 112
    5.3.  Kernel Fisher Discriminant .......................... 114
          5.3.1.   Mathematical programming formulation ....... 114
    5.4.  Kernel Fisher's Discriminant with heterogeneous
          kernels ............................................. 116
    5.5.  Automatic kernel selection KFD algorithm ............ 118
    5.6.  Numerical results ................................... 119
          5.6.1.  Dataset used: Purdue Campus data ............ 119
          5.6.2.  Classifier design ........................... 120
          5.6.3.  Analysis of the results ..................... 121
    5.7.  Conclusion .......................................... 123
    References ................................................ 123

6.  Multi-temporal image classification with kernels .......... 125
       Jordi Muñoz-Marí, Luis Gómez-Chova, Manel
       Martínez-Ramón, José Luis Rojo-Álvarez, Javier
       Calpe-Maravilla and Gustavo Camps-Valls
    6.1.  Introduction ........................................ 126
          6.1.1.  Multi-temporal classification methods ....... 126
          6.1.2.  Change detection methods .................... 127
          6.1.3.  The proposed kernel-based framework ......... 128
    6.2.  Multi-temporal classification and change detection
          with kernels ........................................ 129
          6.2.1.  Problem statement and notation .............. 129
          6.2.2.  Mercer's kernels properties ................. 130
          6.2.3.  Composite kernels for multi-temporal
                  classification .............................. 131
          6.2.4.  Composite kernels for change detection ...... 133
    6.3.  Contextual and multi-source data fusion with
          kernels ............................................. 134
          6.3.1.  Composite kernels for integrating
                  contextual information ...................... 134
          6.3.2.  Composite kernels for dealing with
                  multi-source data ........................... 134
          6.3.3.  Remarks ..................................... 134
    6.4.  Multi-temporal/-source urban monitoring ............. 135
          6.4.1.  Model development and free parameter
                  selection ................................... 135
          6.4.2.  Data collection and feature extraction ...... 135
          6.4.3.  Multi-temporal image classification ......... 138
          6.4.4.  Change detection ............................ 138
          6.4.5.  Classification maps ......................... 141
    6.5.  Conclusions ......................................... 141
    Acknowledgments ........................................... 143
    References ................................................ 143

7.  Target detection with kernels ............................. 147
       Nasser M. Nasrabadi
    7.1.  Introduction ........................................ 147
    7.2.  Kernel learning theory .............................. 149
    7.3.  Linear subspace-based anomaly detectors and their
          kernel versions ..................................... 150
          7.3.1.  Principal component analysis ................ 151
          7.3.2.  Kernel PCA subspace-based anomaly
                  detection ................................... 152
          7.3.3.  Fisher linear discriminant analysis ......... 154
          7.3.4.  Kernel fisher discriminant analysis ......... 154
          7.3.5.  Eigenspace separation transform ............. 156
          7.3.6.  Kernel eigenspace separation transform ...... 157
          7.3.7.  RX algorithm ................................ 159
          7.3.8.  Kernel RX algorithm ......................... 160
    7.4.  Results ............................................. 161
          7.4.1.  Simulated toy data .......................... 162
          7.4.2.  Hyperspectral imagery ....................... 163
    7.5.  Conclusion .......................................... 166
    References ................................................ 166

8.  One-class SVMs for hyperspectral anomaly detection ........ 169
       Amit Banerjee, Philippe Burlina and Chris Diehl
    8.1.  Introduction ........................................ 169
    8.2.  Deriving the SVDD ................................... 172
          8.2.1.  The linear SVDD ............................. 172
          8.2.2.  The kernel-based SVDD ....................... 173
    8.3.  SVDD function optimization .......................... 176
    8.4.  SVDD algorithms for hyperspectral anomaly
          detection ........................................... 177
          8.4.1.  Outline of algorithms ....................... 177
          8.4.2.  Dimensions for the background window ........ 179
          8.4.3.  Estimating sigma ............................ 179
          8.4.4.  Normalized SVDD test statistic .............. 181
    8.5.  Experimental results ................................ 183
    8.6.  Conclusions ......................................... 190
    References ................................................ 191

III.  Semi-supervised image classification .................... 193

9.  A domain adaptation SVM and a circular validation
    strategy for land-cover maps updating ..................... 195
       Mattia Marconcini and Lorenzo Bruzzone
    9.1.  Introduction ........................................ 195
    9.2.  Literature survey ................................... 198
          9.2.1.  Learning under sample selection bias:
                  transductive and semi-supervised methods .... 198
          9.2.2.  Domain adaptation: partially-unsupervised
                  methods ..................................... 200
    9.3.  Proposed domain adaptation SVM ...................... 200
          9.3.1.  DASVM: problem definition and assumptions ... 201
          9.3.2.  DASVM: formulation .......................... 201
    9.4.  Proposed circular validation strategy ............... 208
          9.4.1.  Circular validation strategy: rationale ..... 208
          9.4.2.  Circular validation strategy: formulation ... 209
    9.5.  Experimental results ................................ 210
    9.6.  Discussions and conclusion .......................... 218
    References ................................................ 219

10. Mean kernels for semi-supervised remote sensing
    image classification ...................................... 223
       Luis Gómez-Chova, Javier Calpe-Maravilla, Lorenzo
       Bruzzone and Gustavo Camps-Valls
    10.1. Introduction ........................................ 224
    10.2. Semi-supervised classification with mean kernels .... 225
          10.2.1. Learning from labelled samples .............. 225
          10.2.2. Image clustering ............................ 226
          10.2.3. Cluster similarity and the mean map ......... 226
          10.2.4. Composite sample-cluster kernels ............ 228
          10.2.5. Sample selection bias and the soft
                  mean map .................................... 229
          10.2.6. Summary of composite mean kernel methods .... 231
    10.3. Experimental results ................................ 232
          10.3.1. Model development ........................... 232
          10.3.2. Results on synthetic data ................... 232
          10.3.3. Results on real data ........................ 233
    10.4. Conclusions ......................................... 243
    Acknowledgments ........................................... 243
    References ................................................ 244

IV.  Function approximation and regression .................... 247

11. Kernel methods for unmixing hyperspectral imagery ......... 249
       Joshua Broadwater, Amit Banerjee and Philippe Burlina
    11.1. Introduction ........................................ 249
    11.2. Mixing models ....................................... 250
          11.2.1. Areal mixtures .............................. 251
          11.2.2. Intimate mixtures ........................... 251
    11.3. Proposed kernel unmixing algorithm .................. 252
          11.3.1. Support vector data description for
                  endmember extraction ........................ 254
          11.3.2. Rate-distortion theory ...................... 255
          11.3.3. Kernel fully constrained least squares
                  abundance estimates ......................... 256
          11.3.4. Outline of full algorithm ................... 258
    11.4. Experimental results of the kernel unmixing
          algorithm ........................................... 258
          11.4.1. RELAB data results .......................... 259
          11.4.2. AVIRIS data results ......................... 261
          11.4.3. Processing times ............................ 264
    11.5. Development of physics-based kernels for
          unmixing ............................................ 265
          11.5.1. Simplification of the albedo to
                  reflectance transform ....................... 265
          11.5.2. Kernel approximation of intimate
                  mixtures .................................... 265
    11.6. Physics-based kernel results ........................ 266
    11.7. Summary ............................................. 268
    References ................................................ 268

12. Kernel-based quantitative remote sensing inversion ........ 271
       Yanfei Wang, Changchun Yang and Xiaowen Li
    12.1. Introduction ........................................ 272
    12.2. Typical kernel-based remote sensing inverse
          problems ............................................ 273
          12.2.1. Aerosol inverse problems .................... 274
          12.2.2. Land surface parameter retrieval problem .... 275
    12.3. Well-posedness and ill-posedness .................... 276
    12.4. Regularization ...................................... 278
          12.4.1. Imposing a priori constraints on
                  the solution ................................ 278
          12.4.2. Tikhonov variational regularization ......... 278
          12.4.3. Direct regularization ....................... 282
          12.4.4. Statistical regularization .................. 284
    12.5. Optimization techniques ............................. 285
          12.5.1. Sparse inversion in l1 space ................ 285
          12.5.2. Optimization methods for l2 minimization
                  model ....................................... 286
    12.6. Kernel-based BRDF model inversion ................... 288
          12.6.1. Inversion by NTSVD .......................... 288
          12.6.2. Tikhonov regularized solution ............... 288
          12.6.3. Land surface parameter retrieval results .... 289
    12.7. Aerosol particle size distribution function
          retrieval ........................................... 293
    12.8. Conclusion .......................................... 296
    Acknowledgments ........................................... 296
    References ................................................ 296

13. Land and sea surface temperature estimation by support
    vector regression ......................................... 301
       Gabriele Moser and Sebastiano B. Serpico
    13.1. Introduction ........................................ 302
    13.2. Previous work ....................................... 303
          13.2.1. LST and SST estimation from satellite
                  data ........................................ 303
          13.2.2. Parameter optimization and error modelling
                  for SVR ..................................... 305
    13.3. Methodology ......................................... 306
          13.3.1. SVR for LST and SST estimation .............. 306
          13.3.2. Automatic parameter optimization for SVR .... 307
          13.3.3. Pointwise statistical modelling the
                  SVR error ................................... 309
    13.4. Experimental results ................................ 311
          13.4.1. Data sets and experimental set-up ........... 311
          13.4.2. Parameter-optimization results .............. 313
          13.4.3. Results on the estimation of regression-
                  error variance .............................. 318
    13.5. Conclusions ......................................... 320
    Acknowledgments ........................................... 322
    References ................................................ 322

V.    Kernel-based feature extraction ......................... 327

14. Kernel multivariate analysis in remote sensing
    feature extraction ........................................ 329
       Jerónimo Arenas-García and Kaare Brandt Petersen
    14.1. Introduction ........................................ 329
    14.2. Multivariate analysis methods  ...................... 332
          14.2.1. Principal component analysis (PCA) .......... 333
          14.2.2. Partial least squares ....................... 335
          14.2.3. Canonical correlation analysis .............. 337
          14.2.4. Orthonormalized partial least squares ....... 338
    14.3. Kernel multivariate analysis ........................ 339
          14.3.1. Kernel PCA .................................. 340
          14.3.2. Kernel PLS .................................. 341
          14.3.3. Kernel CCA .................................. 342
          14.3.4. Kernel OPLS ................................. 343
          14.3.5. Some considerations about Kernel MVA
                  methods ..................................... 344
    14.4. Sparse Kernel OPLS .................................. 344
    14.5. Experiments: pixel-based hyperspectral image
          classification ...................................... 346
          14.5.1. Data set description and experimental
                  setup ....................................... 346
          14.5.2. Results description ......................... 347
    14.6. Conclusions ......................................... 350
    Acknowledgments ........................................... 351
    References ................................................ 351

15. KPCA algorithm for hyperspectral target/anomaly
    detection ................................................. 353
       Yanfeng Gu
    15.1. Introduction ........................................ 353
    15.2. Motivation .......................................... 354
          15.2.1. Feature extraction of hyperspectral
                  images ...................................... 354
          15.2.2. Introducing KM for hyperspectral image
                  processing .................................. 355
          15.2.3. Hyperspectral images for numerical
                  experiments ................................. 356
    15.3. Kernel-based feature extraction in hyperspectral
          images .............................................. 357
          15.3.1. Principal component analysis ................ 357
          15.3.2. Kernel mapping .............................. 358
          15.3.3. Kernel Principal Component Analysis
                  (KPCA) ...................................... 358
    15.4. Kernel-based target detection in hyperspectral
          images .............................................. 360
          15.4.1. The concept of target detection ............. 361
          15.4.2. Invariant subpixel material detector ........ 361
          15.4.3. Kernel invariant subpixel detection ......... 362
    15.5. Kernel-based anomaly detection in hyperspectral
          images .............................................. 364
          15.5.1. The concept of anomaly detection ............ 364
          15.5.2. RX detector ................................. 366
          15.5.3. Selective KPCA Feature Extraction for
                  Anomaly Detection ........................... 367
    15.6. Conclusions ......................................... 372
    Acknowledgments ........................................... 372
    References ................................................ 372

16. Remote sensing data classification with kernel
    nonparametric feature extractions ......................... 375
       Bor-Chen Kuo, Jinn-Min Yang and Cheng-Hsuan Li
    16.1. Introduction ........................................ 376
    16.2. Related feature extractions ......................... 377
          16.2.1. Linear discriminant analysis ................ 377
          16.2.2. Generalized discriminant analysis ........... 378
          16.2.3. Nonparametric weighted feature extraction ... 380
          16.2.4. Fuzzy linear feature extraction ............. 382
    16.3. Kernel-based NWFE and FLFE .......................... 383
          16.3.1. Kernel-based NWFE ........................... 383
          16.3.2. Kernel-based FLFE ........................... 386
    16.4. Eigenvalue resolution with regularization ........... 388
    16.5. Experiments ......................................... 389
          16.5.1. Data sets ................................... 389
          16.5.2. Experiment design ........................... 392
          16.5.3. Experiment results .......................... 392
    16.6. Comments and conclusions ............................ 398
    References ................................................ 398

Index ......................................................... 401


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:26 2019. Размер: 29,084 bytes.
Посещение N 2027 c 05.10.2010