Handbook of green chemistry: green catalysis. Vol.1: Homogeneous catalysis (Weinheim, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHandbook of green chemistry: green catalysis. Vol.1: Homogeneous catalysis / ed. by P.T.Anastas; vol. ed. R.H.Crabtree. - Weinheim: Wiley, 2009. - xvii, 414 p.: ill. - Incl. bibl. ref. - Ind.: p.399-414. - ISBN 978-3-527-32496-5
 

Место хранения: 031 | Институт катализа им. Г.К.Борескова CO РАН | Новосибирск

Оглавление / Contents
 
About the Editors ............................................ XIII
List of Contributors ........................................... XV

1  Atom Economy - Principles and Some Examples .................. 1
   Audrey Moores
   1.1  Introduction ............................................ 1
   1.2  Principle of Atom Economy ............................... 2
        1.2.1  Atom Economy: a Pillar of Green Chemistry ........ 2
        1.2.2  Principle and Criteria ........................... 3
        1.2.3  Impact of Atom Economy on the Chemical 
               Industry ......................................... 5
        1.2.4  Atom Economy Tool Box ............................ 5
   1.3  Atom Economical by Design: Examples of Reactions
        Relying on С Activation ................................. 6
        1.3.1  Tandem Reactions Involving Hydrogen Transfer ..... 7
        1.3.2  Selective C-H Activation for C-C Bond 
               Formation ........................................ 9
   1.4  Conclusion ............................................. 12
        References ............................................. 13
2  Catalysis Involving Fluorous Phases: Fundamentals and
   Directions for Greener Methodologies ........................ 17
   John A. Cladysz
   2.1  Introduction ........................................... 17
   2.2  Directions for Greener Fluorous Methodologies .......... 19
   2.3  Solvents for Fluorous Chemistry ........................ 21
   2.4  Ponytails and Partition Coefficients ................... 23
   2.5  Specific Examples of Catalyst Recovery that Exploit
        Temperature-dependent Solubilities ..................... 24
        2.5.1  Two Early Examples .............................. 24
        2.5.2  First Examples from the Author's Laboratory ..... 28
        2.5.3  Concurrent Work by Ishihara and Yamamoto ........ 28
        2.5.4  Additional Examples from Other Research
               Groups .......................................... 28
        2.5.5  Additional Examples from the Author's
               Laboratory ...................................... 29
   2.6  Specific Examples of Catalyst Recovery that Exploit
        Fluorous Solid Phases .................................. 30
        2.6.1  Fluoropolymer Supports .......................... 30
        2.6.2  Fluorous Silica Gel Supports .................... 32
        2.6.3  Approaches Involving CO2 Pressure ............... 34
        2.6.4  Fluorous Solid-phase Extractions ................ 34
   2.7  Summary and Perspective ................................ 35
        References ............................................. 36
3  Chemistry and Applications of Iron-TAML Catalysts in Green
   Oxidation Processes Based on Hydrogen Peroxide .............. 39
   TerrenceJ. Collins, Sushil K. Khetan, and Alexander
   D. Ryabov
   3.1  Introduction ........................................... 39
   3.2  Properties of Fe-TAMLs and Mechanisms of Oxidation
        with Hydrogen Peroxide ................................. 40
        3.2.1  Properties of Tetraamido Macrocyclic Iron(III)
               Complexes in the Solid State and in Water ....... 40
               3.2.1.1  Solid-State Structure and Speciation
                        in Water ............................... 40
               3.2.1.2  Binding of Axial Ligands in Water ...... 42
        3.2.2  Demetalation of Fe-TAMLs ........................ 45
               3.2.2.1  Induced by the Proton (Specific
                        Acid) .................................. 45
               3.2.2.2  Induced by General Acids ............... 46
        3.2.3  Understanding Mechanisms of Catalysis by
               Fe-TAML Activators of Hydrogen Peroxide ......... 48
               3.2.3.1  General Mechanism ...................... 48
               3.2.3.2  Mechanism of Benzoyl Peroxide
                        Activation ............................. 50
               3.2.3.3  Nature of Oxidized ТАМLs: Hypotheses
                        and Facts .............................. 51
        3.2.4  The Activity-Stability Parameterization of
               Homogeneous Green Oxidation Catalysts ........... 54
               3.2.4.1  Kinetic Model for Parameterization ..... 54
               3.2.4.2  Model Verifications .................... 59
   3.3  Applications of Fe-TAMLs ............................... 61
        3.3.1  Degradation of Phosphorothioate and Phosphate
               Esters .......................................... 61
               3.3.1.1  Total Degradation of Organophosphorus
                        (OP) Pesticides ........................ 61
               3.3.1.2  Decontamination of Chemical Warfare
                        Agents ................................. 63
        3.3.2  Sulfoxidation Reactions ......................... 64
               3.3.2.1  Reactions of Organic Sulfides .......... 64
               3.3.2.2  Decontamination of Sulfur Mustard ...... 64
               3.3.2.3  Removal of Benzothiophene and
                        Dibenzothiophenes from Diesel .......... 65
        3.3.3  Breaking of Disulfide Bonds and the Likely
               Significance for the Disinfection of Spores ..... 66
               3.3.3.1  Oxidative Rupture of Organic
                        Disulfides ............................. 66
               3.3.3.2  Deactivation of Microbial Pathogens .... 66
        3.3.4  Oxidative Degradation of Phenols ................ 67
               3.3.4.1  Total Degradation of Trichloro- and
                        Pentachlorophenols ..................... 67
               3.3.4.2  Total Degradation of Nitrophenols ...... 68
        3.3.5  Degradation of Emerging Micropollutants ......... 69
               3.3.5.1  Endocrine-disrupting Compounds ......... 70
               3.3.5.2  Degradation of Pharmaceutical Active
                        Ingredients (PAIs) ..................... 70
        3.3.6  Bleaching of Azo Dyes ........................... 71
        3.3.7  Pulp Bleaching and Craft Mill Effluent
               Treatment (PFe Process)
   3.4  Conclusion ............................................. 73
        References ............................................. 74
4  Microwave-Accelerated Homogeneous Catalysis in Water ........ 79
   Luke R. Odell and Mats Larhed
   4.1  Introduction ........................................... 79
        4.1.1  Microwave Heating ............................... 79
        4.1.2  Water as a Green Reaction Medium ................ 81
        4.1.3  Homogeneous Transition Metal Catalysis .......... 81
        4.1.4  Microwave-Assisted Metal Catalysis in Water ..... 82
   4.2  Suzuki-Miyaura Reactions ............................... 82
   4.3  The Stille Reaction .................................... 85
   4.4  The Hiyama Cross-Coupling Reaction ..................... 86
   4.5  The Heck Reaction ...................................... 86
   4.6  Carbonylation Reactions ................................ 88
   4.7  The Sonogashira Reaction ............................... 90
   4.8  Aryl-Nitrogen Couplings ................................ 91
   4.9  Aryl-Oxygen Couplings .................................. 92
   4.10 Miscellaneous Transformations .......................... 92
   4.11 Conclusion ............................................. 94
   References .................................................. 95

5  Ionic Liquids and Catalysis: the IFP Biphasic Difasol
   Process ...................................................... 1
   Hélène Olivier-Bourbigou, Frédéric Favre, Alain Forestière,
   and François Hugues
   5.1  I ntroduction ......................................... 101
   5.2  The Solvent in Catalytic Reactions .................... 102
        5.2.1  Non-Aqueous Ionic Liquids ...................... 103
        5.2.2  Applications of Non-Aqueous Ionic Liquids in
               Catalysis ...................................... 104
   5.3  The Catalytic Oligomerization of Olefins .............. 104
        5.3.1  The Homogeneous Dimersol Process ............... 106
               5.3.1.1  The Reaction .......................... 106
               5.3.1.2  The Process ........................... 107
               5.3.1.3  Effect of Some Parameters ............. 108
               5.3.1.4  Process Performance: the Case of
                        Dimersol X (Transformation
                        ofButenes) ............................ 109
               5.3.1.5  Economics of the Dimersol X Process ... 109
               5.3.1.6  Dimersol Process Limitations .......... 110
        5.3.2  The Biphasic Approach .......................... 110
               5.3.2.1  The Choice of the Ionic Liquid ........ 110
               5.3.2.2  Production of the Ionic Liquid ........ 113
   5.4  The Biphasic Difasol Process .......................... 113
        5.4.1  The Biphasic Transformation of Butenes (Pilot
               Development) ................................... 114
               5.4.1.1  The Difasol Process: Different
                        Process Schemes and Estimated
                        Performances .......................... 115
               5.4.1.2  Economics of the Difasol Process ...... 118
        5.4.2  The Biphasic Transformation of Propylene ....... 119
   5.5  Conclusion ............................................ 124
        References ............................................ 124

6  Immobilization and Compartmentalization of Homogeneous
   Catalysts .................................................. 127
   Christian Müller and Dieter Vogt
   6.1  Introduction .......................................... 127
   6.2  Soluble Dendrimer-bound Homogeneous Catalysts ......... 128
        6.2.1  Covalently Linked Dendrimer-bound Catalysts .... 128
               6.2.1.1  Carbosilane Dendrimers as Soluble
                        Supports .............................. 129
               6.2.1.2  Poly(Benzyl Ether) Dendrimers as
                        Soluble Supports ...................... 132
               6.2.1.3  DAB Dendrimers as Soluble Supports .... 133
               6.2.1.4  РАМАМ Dendrimers as Soluble
                        Supports .............................. 134
               6.2.1.5  PPI Dendrimers as Soluble Supports .... 134
        6.2.2  Non-covalently Linked Dendrimer-bound
               Catalysts ...................................... 136
   6.3  Polymer-bound Homogeneous Catalysts ................... 138
        6.3.1  Covalently Linked Polymer-bound Catalysts ...... 138
               6.3.1.1  Molecular Weight Enlargement for
                        Continuous Homogeneous Catalysis ...... 138
               6.3.1.2  Soluble Polymer-supported Catalysts
                        for Liquid-Liquid Recovery of
                        Catalysts ............................. 144
        6.3.2  Electrostatically Bound Catalysts .............. 146
   6.4  Conclusion and Outlook ................................ 149
        References ............................................ 149
7  Industrial Applications of Homogeneous Enantioselective
   Catalysts .................................................. 185
   Hans-Ulrich Blaser, Garrett Hoge, Benoît Pugin, and Felix
   Spindler
   7.1  Introduction and Scope ................................ 153
   7.2  Critical Factors for the Technical Application of
        Homogeneous Enantioselective Catalysts ................ 155
        7.2.1  Characteristics of the Manufacture of
               Enantiomerically Enriched Products ............. 155
        7.2.2  Characteristics of Enantioselective Catalytic
               Processes ...................................... 156
        7.2.3  Critical Factors for the Application of
               Enantioselective Catalysts ..................... 156
        7.2.4  Classification of Enantioselective
               Transformations ................................ 157
   7.3  Industrial Processes: General Comments ................ 157
   7.4  Hydrogenation of C—C Bonds ............................ 159
        7.4.1  Hydrogenation of Dehydro-α-amino Acid
               Derivatives .................................... 159
               7.4.1.1  L-Dopa (Monsanto, VEB Isis-Chemie) .... 159
               7.4.1.2  Aspartame (Enichem/Anic, Degussa) ..... 161
               7.4.1.3  Various Pilot- and Bench-Scale
                        Processes for the Synthesis of
                        α-Amino Acid Derivatives .............. 161
        7.4.2  Hydrogenation of Dehydro-β-amino Acid
               Derivatives .................................... 163
               7.4.2.1  Sitagliptin (Merck) ................... 164
        7.4.3  Hydrogenation of Simple Enamides and Enol
               Acetates ....................................... 164
        7.4.4  Hydrogenation of Itaconic Acid Derivatives ..... 166
        7.4.5  Hydrogenation of Allylic Alcohols and
               α, β-Unsaturated Acids ......................... 167
               7.4.5.1  Hydrogenation of Allylic Alcohols ..... 167
               7.4.5.2  Hydrogenation of α, β-Unsaturated
                        Acids ................................. 168
               7.4.5.3  Hydrogenation for Synthon A of
                        Aliskiren (Speedel/Novartis) .......... 169
        7.4.6  Hydrogenation of Miscellaneous C=C Systems ..... 171
               7.4.6.1  Hydrogenation of a Biotin
                        Intermediate (Lonza) .................. 171
               7.4.6.2  Synthesis of (+)-Methyl cts-
                        Dihydrojasmonate (Firmenich) .......... 172
               7.4.6.3  Intermediate for Tipranavir ........... 172
               7.4.6.4  Intermediate for Candoxatril .......... 173
               7.4.6.5  Intermediate for Pregabalin ........... 173
   7.5  Hydrogenation of C=0 Bonds ............................ 175
        7.5.1  Hydrogenation of α-Functionalized Ketones ...... 175
        7.5.2  Hydrogenation of β-Functionalized Ketones ...... 177
        7.5.3  Hydrogenation of Aromatic Ketones .............. 178
   7.6  Hydrogenation of C=N Bonds ............................ 181
        7.6.1  (S)-Metolachlor Process ........................ 181
   7.7  Oxidation Processes ................................... 183
        7.7.1  Sulfide Oxidation .............................. 283
               7.7.1.1  Esomeprazole (AstraZeneca) ............ 183
        7.7.2  Sharpless Epoxidation .......................... 185
               7.7.2.1  Glycidol (PPG-Sipsy) .................. 185
               7.7.2.2  Disparlure (J.T. Baker) ............... 185
        7.7.3  Jacobsen Epoxidation ........................... 186
               7.7.3.1  Indene Oxide (ChiRex) ................. 186
        7.7.4  Sharpless Dihydroxylation (AD) and
               Aminohydroxylation ............................. 187
   7.8  Miscellaneous Transformations (Isomerization,
        Addition Reactions to  C=C, C=O and C=N Bonds,
        Opening of Oxacycles) ................................. 188
        7.8.1  Isomerization, Allylic Alkylation .............. 188
               7.8.1.1  (-)-Menthol Process (Takasago) ........ 188
               7.8.1.2  Various Alkylation Reactions .......... 189
        7.8.2  Addition Reactions to C=C Bonds ................ 189
               7.8.2.1  Cilastatin (Sumitomo) ................. 190
        7.8.3  Addition Reactions to C=0 Bonds ................ 190
        7.8.4  Addition Reactions to C=N Bonds ................ 192
        7.8.5  Ring-opening Reactions of Oxacycles ............ 193
   7.9  Conclusions and Future Developments ................... 195
        References ............................................ 196

8  Hydrogenation for С- С Bond Formation ...................... 205
   John F. Bower and Michael J. Krische
   8.1  By-product-free C-C Coupling and the Departure from
        Preformed Organometallic Reagents ..................... 205
   8.2  Hydrogenative Vinylation of Carbonyl Compounds and
        Imines ................................................ 210
   8.3  Hydrogenative Allylation of Carbonyl Compounds ........ 217
   8.4  Hydrogenative Aldol and Mannich Additions ............. 224
   8.5  Hydrogenative Acyl Substitution (Reductive
        Hydroacylation) ....................................... 233
   8.6  Hydrogenative Carbocyclization ........................ 236
   8.7  Future Directions ..................................... 240
   References ................................................. 241

9  Organocatalysis ............................................ 255
   Isabelle McCort-Tranchepain, Morgane Petit, and
   Peter I. Dalko
   9.1  Introduction .......................................... 255
   9.2  Catalysts ............................................. 256
        9.2.1  Catalyst Functions ............................. 256
               9.2.1.1  Brensted Acids ........................ 256
               9.2.1.2  Lewis acids ........................... 257
               9.2.1.3  Brønsted Bases ........................ 258
               9.2.1.4  Lewis Bases ........................... 258
        9.2.2  Catalyst Structures ............................ 258
               9.2.2.1  Privileged Catalysts .................. 258
               9.2.2.2  Synthetic Oligopeptides and Peptide
                        Analogs ............................... 263
   9.3  Reactions ............................................. 264
        9.3.1  Nucleophilic Additions to C=0 .................. 264
               9.3.1.1  Aldol- and Knoevenagel-type
                        Additions ............................. 264
               9.3.1.2  Allylation Reactions .................. 269
               9.3.1.3  Nitroaldol (Henry) Reactions .......... 269
               9.3.1.4  Hydrocyanation ........................ 270
               9.3.1.5  The Morita-Baylis-Hillman (MBH)
                        Reaction .............................. 271
               9.3.1.6  Asymmetric Acyl Transfer Reactions .... 273
        9.3.2  Nucleophilic Additions to C=N .................. 276
               9.3.2.1  Mannich-type Reactions ................ 276
               9.3.2.2  The Nitro-Mannich (Aza-Henry)
                        Reaction .............................. 279
               9.3.2.3  The Asymmetric Strecker Reaction ...... 280
               9.3.2.4  Pictet-Spengler-type Cyclizations ..... 281
               9.3.2.5  Reduction of Ketimines ................ 282
        9.3.3  Additions to Alkenes ........................... 282
               9.3.3.1  Michael Addition ...................... 282
               9.3.3.2  Cyclopropanation ...................... 289
               9.3.3.3  Epoxidation of Alkenes ................ 291
               9.3.3.4  Cycloaddition reactions ............... 295
               9.3.3.5  Transfer Hydrogenation of Alkenes ..... 301
        9.3.4  Organocatalytic Multicomponent and Cascade
               Reactions ...................................... 302
               9.3.4.1  Single Catalyst-mediated Domino
                        Reactions ............................. 302
               9.3.4.2  Multicatalyst Cascade Reactions ....... 307
        9.4  Conclusion ....................................... 309
        References ............................................ 309
10 Palladacycles in Catalysis ................................. 319
   Jairton Dupont and Fabricio R. Flores
   10.1 Introduction .......................................... 319
   10.2 Catalyst Precursors for C-C and C-X (Heteroatom)
        Coupling Reactions .................................... 320
        10.2.1 Heck-Mirozoki Coupling ......................... 321
        10.2.2 Suzuki Coupling ................................ 326
        10.2.3 Stille, Kumada and Negishi Coupling ............ 328
        10.2.4 Buchwald-Hartwig Animation ..................... 329
        10.2.5 Sonogashira Coupling ........................... 330
        10.2.6 Other Cross-coupling Reactions ................. 332
   10.3 Other Catalytic Reactions Catalyzed by
        Palladacycles ......................................... 333
        10.3.1 Asymmetric Rearrangements ...................... 333
        10.3.2 Aldol Condensations and Related Reactions ...... 334
        10.3.3 Oxidation, Telomerization and Substitution
               Reactions ...................................... 336
        10.4 Conclusion ....................................... 337
        References ............................................ 338

11 Homogeneous Catalyst Design for the Synthesis of
   Aliphatic Polycarbonates and Polyesters .................... 343
   Geoffrey W. Coates and Ryan С. Jeske
   11.1 Introduction .......................................... 343
   11.2 Synthesis of Aliphatic Polycarbonates from Epoxides
        and Carbon Dioxide .................................... 344
        11.2.1 Background ..................................... 346
        11.2.2 Chromium Catalysts ............................. 348
        11.2.3 Cobalt Catalysts for Epoxide-CO2
               Copolymerization ............................... 352
        11.2.4 Zinc Catalysts for Epoxide-CO2
               Copolymerization ............................... 354
               11.2.4.1 Zinc Phenoxides for Epoxide-CO2
                        Copolymerization ...................... 354
               11.2.4.2 Single-site β-Diiminate Zinc
                        Catalysts for Epoxide-CO2 Coupling .... 355
               11.2.4.3 Zinc Catalysts for Asymmetric
                        CHO-CO2 Copolymerization .............. 359
   11.3 Synthesis of Aliphatic Polyesters ..................... 360
        11.3.1 Synthesis of Poly(lactic Acid) ................. 361
               11.3.1.1 Background ............................ 361
               11.3.1.2 Aluminum Catalysts for the Synthesis
                        of PLA ................................ 362
               11.3.1.3 Zinc Catalysts for the Synthesis of
                        PLA ................................... 364
               11.3.1.1 Germanium Catalysts for the
                        Synthesis of PLA ...................... 365
               11.3.1.5 Metal-free Catalysts for the
                        Synthesis of PLA ...................... 365
        11.3.2 Synthesis of Poly(hydroxyalkanoate)s ........... 366
        11.3.3 ROP of Other Cyclic Esters ..................... 367
        11.3.4 Copolymerization of Epoxides and Cyclic
               Anhydrides ..................................... 368
        11.3.5 Summary ........................................ 370
12 The Aerobic Oxidation of p-Xylene to Terephthalic acid:
   a Classic Case of Green Chemistry in Action ................ 375
   Walt Partenheimer and Martyn Poliakoff
   12.1 Introduction .......................................... 375
   12.2 Methods of Making Terephthalic Acid Using
        Stoichiometric Reagents ............................... 377
   12.3 Methods for Preparing Terephthalic Acid Using Cobalt
        Acetate and Dioxygen in Acetic Acid ................... 378
   12.4 Adding Bromide to Improve Terephthalic Acid
        Production Using Cobalt and Manganese Acetates in
        Acetic Acid ........................................... 385
   12.5 Potential Processes Using Water as a Solvent .......... 388
   12.6 Summary and Final Comments ............................ 392
   References ................................................. 394

Index ......................................................... 399


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:24 2019. Размер: 28,219 bytes.
Посещение N 2089 c 05.10.2010