Pulsed laser deposition of thin films: applications-led growth of functional materials (Hoboken, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPulsed laser deposition of thin films: applications-led growth of functional materials / ed. by R.Eason. - Hoboken: Wiley, 2007. - xxiii, 682 p. - Incl. bibl. ref. - Ind.: p.649-662. - ISBN-10 0-471-44709-9; ISBN-13 978-047144709-2
 

Оглавление / Contents
 
    PREFACE ................................................... xix
    CONTRIBUTORS .............................................. xxi

SECTION 1.1

1.  Pulsed Laser Deposition of Complex Materials: Progress
    Toward Applications ......................................... 3
       David P. Norton
    1.1.  Introduction .......................................... 3
    1.2.  What Is PLD? .......................................... 4
    1.3.  Where Is Pulsed Laser Deposition Being Applied? ....... 9
          1.3.1. Complex Oxide Film Growth ...................... 9
          1.3.2. Epitaxial Interface and Superlattice
                 Formation ..................................... 10
          1.3.3. Superconducting Electronic Devices ............ 11
    1.4.  Exploring Novel Oxide Devices Concepts ............... 14
          1.4.1. Tunable Microwave Electronics ................. 15
          1.4.2. Wide Bandgap Electronics ...................... 17
    1.5.  Thin-Film Optics ..................................... 20
    1.6.  Oxide Sensor Devices ................................. 21
    1.7.  Protective Coatings and Barriers ..................... 23
          1.7.1. Biocompatible Coatings ........................ 24
    1.8.  Nanomaterial Synthesis ............................... 25
    1.9.  Polymer and Organic Thin Films ....................... 26
          1.9.1.    Biological Thin-Film Materials ............. 27
    1.10. Summary .............................................. 28
    References ................................................. 28

SECTION 2 ...................................................... 33

2.  Resonant Infrared Pulsed Laser Ablation and Deposition
    of Thin Polymer Films ...................................... 35
       Daniel-Dennis McAlevy Bubb and Richard F. Haglund, Jr.
    2.1.  Technological Significance of Organic Thin-Film
          Deposition ........................................... 36
    2.2.  Laser-Based Methods for Deposition of Polymer
          Thin Films: An Overview .............................. 37
          2.2.1. Pulsed Laser Deposition with UV Lasers ........ 37
          2.2.2. Matrix-Assisted Pulsed Laser Evaporation ...... 37
          2.2.3. Photosensitized Ablation and Deposition ....... 38
          2.2.4. Resonant Infrared Pulsed Laser Deposition ..... 39
          2.2.5. Summary of Techniques ......................... 41
    2.3.  Deposition, Ablation, and Characterization of
          Selected Polymers .................................... 41
          2.3.1. Characterization of Deposited Material ........ 41
          2.3.2. Choice of Polymers for Early Studies .......... 44
          2.3.3. Polyethylene Glycol ........................... 44
          2.3.4. Polystyrene ................................... 47
          2.3.5. Deposition of Application-Oriented Polymers
                 by RIR-PLD..................................... 49
    2.4.  Mechanism of Resonant Infrared Laser Ablation ........ 56
    2.5.  Lasers for Infrared Laser Ablation and Deposition .... 58
    2.6.  Conclusions .......................................... 59
          References ........................................... 60

3.  Deposition of Polymers and Biomaterials Using the
    Matrix-Assisted Pulsed Laser Evaporation (MAPLE)
    Process .................................................... 63
       Alberto Piqué
    3.1.  Introduction ......................................... 63
    3.2.  Limitations of PLD for the Growth of Organic Thin
          Films ................................................ 64
    3.3.  Fundamentals of the MAPLE Process .................... 64
          3.3.1. Growth of Polymer Thin Films .................. 68
          3.3.2. Growth of Biomaterial Thin Films .............. 72
    3.4.  Current Status of MAPLE: Challenges and
          Opportunities ........................................ 75
    3.5.  Future of MAPLE ...................................... 79
    3.6.  Summary .............................................. 82
    References ................................................. 82

4.  In Situ Diagnostics by High-Pressure RHEED During PLD ...... 85
       Guus Rijnders and Dave H. A. Blank
    4.1.  Introduction ......................................... 85
    4.2.  Basic Principles ..................................... 85
    4.3.  High-Pressure RHEED .................................. 87
          4.3.1. Geometry and Basic Principles of RHEED ........ 87
          4.3.2. Utility of RHEED: Surface Properties .......... 90
          4.3.3. Utility of RHEED: Monitoring Thin-Film
                 Growth ........................................ 92
    4.4.  High-Pressure RHEED Setup ............................ 93
    4.5.  Conclusions .......................................... 96
    References ................................................. 97

5.  Ultrafast Laser Ablation and Film Deposition ............... 99
       Eugene G. Gamaly, Andrei V. Rode, and
       Barry Luther-Davies
    5.1.  Introduction ......................................... 99
    5.2.  Ablation by Short Independent Laser Pulses and
          Deposition of Film .................................. 101
          5.2.1. Short-Pulse Laser-Matter Interaction ......... 101
          5.2.2. Ablation Mechanisms .......................... 105
          5.2.3. Ablation Thresholds .......................... 107
          5.2.4. Ablation Rate, Mass, and Depth ............... 110
          5.2.5. Atomization of Laser Plume: Spatial Pulse
                 Shaping ...................................... 111
    5.3.  Cumulative Ablation of Solids by High-Repetition-
          Rate Short-Pul ...................................... 117
          5.3.1. Dwell Time and Number of Pulses per Focal
                 Spot ......................................... 118
          5.3.2. Smoothing of the Evaporation Conditions on
                 the Surface .................................. 119
          5.3.3. Ablation in Air and in Vacuum ................ 119
    5.4.  Experimental Results: Deposition of Thin Films by
          Short-Pulse MHz Repetition Rate Laser ............... 121
          5.4.1. Deposition of Amorphous Carbon Films ......... 121
          5.4.2. Deposition of Chalcogenide Glass Films ....... 122
    5.5.  Short-Pulse High-Repetition-Rate Laser Systems ...... 123
          5.5.1. Table-top 50-W Solid-State Ultrafast Laser
                 System ....................................... 124
          5.5.2. Free-Electron Laser .......................... 125
    5.6.  Concluding Remarks .................................. 126
    References ................................................ 127

6.  Cross-Beam PLD: Metastable Film Structures from
    Intersecting Plumes ....................................... 131
       André Gorbunoff
    6.1.  Introduction ........................................ 131
          6.1.1. Energetic Particles in PLD ................... 131
          6.1.2. Origin of Metastable Film Structures
                 in PLD ....................................... 134
    6.2.  Technique of Cross-Beam PLD ......................... 137
          6.2.1. Basic Idea and Instrumentation ............... 137
          6.2.2. Spatio-energetical Characteristics of
                 the Plume in CBPLD ........................... 139
    6.3.  Nanoscale Multilayer Deposition ..................... 144
          6.3.1. Morphological and Compositional Roughness
                 in PLD ....................................... 145
          6.3.2. Det ermination of the Compositional
                 Profile ...................................... 145
    6.4.  Abnormal Phase Formation in Co-deposited Alloys ..... 149
          6.4.1. Amorphous Fe-Al Alloys ....................... 149
          6.4.2. Paramagnetic Fe-Cr Alloys .................... 151
    6.5.  Conclusions ......................................... 156
    References ................................................ 158

7.  Combinatorial Pulsed Laser Deposition ..................... 161
       Ichiro Takeuchi
    7.1.  Introduction ........................................ 161
    7.2.  Combinatorial Approach to Materials ................. 162
    7.3.  Pulsed Laser Deposition for Fabrication of
          Combinatorial Libraries ............................. 163
    7.4.  Synthesis Technique Using Thin-Film Precursors ...... 163
    7.5.  High-Throughput Thin-Film Deposition ................ 166
    7.6.  Combinatorial Laser Molecular Beam Epitaxy .......... 168
    7.7.  Composition Spreads and Combinatorial Materials
          Science ............................................. 171
    7.8.  Conclusion .......................................... 175
    References ................................................ 175

8.  Growth Kinetics During Pulsed Laser Deposition ............ 177
       Guus Rijnders and Dave H. A. Blank
    8.1.  Introduction ........................................ 177
    8.2.  Growth Modes at Thermodynamic Equilibrium ........... 177
          8.3.1. Homoepitaxial Growth Modes ................... 179
          8.3.2. Homoepitaxial Growth Study of SrTi03 ......... 180
    8.4.  Pulsed Laser Interval Deposition .................... 187
    8.5.  Conclusions ......................................... 189
    References ................................................ 190

9.  Large-Area Commercial Pulsed Laser Deposition ............. 191
       Jim Greer
    9.1.  Introduction ........................................ 191
    9.2.  Advances in Large-Area PLD Films .................... 192
    9.3.  Issues with Scale-Up for PLD ........................ 195
          9.3.1. Intelligent Windows .......................... 197
          9.3.2. Substrate Heaters ............................ 198
          9.3.3. Heaters for Coated Conductors ................ 202
          9.3.4. Target Size and Manipulation ................. 205
          9.3.5. Target Manipulation for Coated Conductors .... 206
          9.3.6. Deposition Rate Monitors ..................... 209
    9.4.  Commercial Systems .................................. 210
    9.5.  Commercial Components ............................... 212
    9.6.  Conclusions ......................................... 213
    References ................................................ 213

SECTION 3 ..................................................... 215

10. Coating Powders for Drug Delivery Systems Using
    Pulsed Laser Deposition ................................... 217
       James D. Talton, Barbel Eppler, Margaret I. Davis,
       Andrew L. Mercado, and James M. Fitz-Gerald
    10.1. Introduction 217
    10.2. Background 218
          10.2.1. Wet Powder Coating Techniques 219
          10.2.2. Dry Powder Coating Techniques 219
          10.2.3. Deposition of Polymer Thin Films 220
    10.3. Laser-Assisted Methods of Coating Particles 221
          10.3.1. Experimental Configurations 222
          10.3.2. Polymeric Coating Materials 223
          10.3.3. Particle Fluidization 223
    10.4. Microencapsulated Pharmaceutical Formulations 224
          10.4.1. Characterization of Deposited Polymers 224
          10.4.2. Microencapsulated Inhaled Therapies 230
    10.5. Manufacturing and Scaleup 234
    10.6. Summary 235
    References 236

11. Transparent Conducting Oxide Films ........................ 239
       Heungsoo Kim
    11.1. Introduction ........................................ 239
          11.2.1. Electrical Properties ....................... 240
          11.2.2. Optical Properties .......................... 240
    11.3. Advantages of PLD for TCO Films ..................... 241
    11.4. Optimum PLD Conditions for TCO Films ................ 242
          11.4.1. Substrate Deposition Temperature ............ 242
          11.4.2. Oxygen Deposition Pressure .................. 243
          11.4.3. Film Thickness .............................. 244
          11.4.4. Other Laser Conditions ...................... 244
    11.5. Laser-Deposited TCO Films ........................... 245
          11.5.1. ITO Films ................................... 245
          11.5.2. Undoped and Doped ZnO Films ................. 250
          11.5.3. Other n-Type TCO Films ...................... 251
          11.5.4. p-Type TCO Films ............................ 251
    11.6. Applications of TCO Films ........................... 253
          11.6.1. Display Devices ............................. 253
          11.6.2. Photovoltaic Devices ........................ 256
          11.6.3. Transparent Thin-Film Field-Effect
                  Transistor (FET) ............................ 257
    11.7. Conclusion and Future Directions .................... 258
    References ................................................ 258

12. ZnO and ZnO-Related Compounds ............................. 261 
       Jacques Perrière, Eric Millon, and Valentin Craciun
    12.1. Introduction ........................................ 261
    12.2. ZnO Thin-Film Growth by PLD: General Features ....... 262
          12.2.1. Historical Background ....................... 262
          12.2.2. Surface Morphology and Texture .............. 264
          12.2.3. Control of the Stoichiometry ................ 265
          12.2.4. Recent Applications and Developments ........ 267
    12.3. ZnO Epitaxial Thin Films ............................ 268
          12.3.1. ZnO Epitaxial Growth on Sapphire ............ 269
          12.3.2. ZnO Epitaxial Growth on Other Substrates .... 273
          12.3.3. Epitaxial Growth of ZnO-Related Compounds ... 274
          12.3.4. Main Applications of Epitaxial ZnO Films .... 275
    12.4. ZnO Nanocrystalline Films ........................... 278
          12.4.1. Nanosecond PLD under High Oxygen Pressure ... 279
          12.4.2. Femtosecond PLD ............................. 281
          12.4.3. Applications of Nanocrystalline ZnO Films ... 282
    12.5. Conclusions and Future Perspectives ................. 284
    References ................................................ 285

13. Group HI Nitride Growth ................................... 291
       Donagh O'Mahony and James G. Lunney
    13.1. Introduction ........................................ 291
    13.2. Properties of Group III Nitrides and Group III
          Metals .............................................. 292
          13.2.1. Group HI Nitrides ........................... 292
          13.2.2. Thermal Decomposition of Group III
          Nitrides ............................................ 292
          13.2.3. Group III Elements: Al, Ga, and In .......... 294
          13.2.4. Target Preparation .......................... 295
    13.3. Laser Ablation of Group III Nitrides and Group III
          Metals .............................................. 295
          13.3.1. General Characteristics of the Ablation 
                  Process in PLD .............................. 295
          13.3.2. Characteristics of the Ablation Process
                  in Vacuum ................................... 296
          13.3.3. Plume-Background Gas Interaction ............ 298
    13.4. Guidelines for Film Growth .......................... 300
          13.4.1. Setting the Growth Parameters ............... 300
          13.4.2. Film Growth in N2 ........................... 301
          13.4.3. Film Growth in Other Atmospheres ............ 301
          13.4.4. Substrates and Growth Temperature ........... 302
    13.5. Selective Review of the Properties of AIN, GaN,
          and InN Films Grown by PLD .......................... 302
          13.5.1. Structural Properties ....................... 302
          13.5.2. Electronic Properties ....................... 304
          13.5.3. Optical Properties .......................... 304
    13.6. Novel Areas of Research ............................. 305
          13.6.1. Composites for Electronic and
                  Optoelectronic Applications ................. 305
          13.6.2. Magnetic Doping: Diluted Magnetic
                  Semiconductors for Spin Electronics ......... 306
    13.7. Summary and Outlook ................................. 307
    References ................................................ 308

14. Pulsed Laser Deposition of High-Temperature
    Superconducting Thin Films and Their Applications ......... 313
       Bernd Schey
    14.1. Introduction ........................................ 313
    14.2. High-Temperature Superconductor Devices for
          Electronic and Medical Applications ................. 314
          14.2.1. High-Temperature Superconductor
                  Communication ............................... 314
          14.2.2. Digital Electronics ......................... 318
          14.2.3. SQUID Systems ............................... 320
    14.3. Electric Power and Energy ........................... 323
          14.3.1. Applications of Coated Conductors ........... 323
          14.3.2. Coated Conductors: State of Development ..... 324
          14.3.3. Future Trends ............................... 326
    14.4. Potential of PLD in the Commercialization of HTS .... 326
    References ................................................ 327

15. Diamond-Like Carbon: Medical and Mechanical
    Applications .............................................. 333
       Roger J. Narayan
    15.1. Introduction ........................................ 333
    15.2. Physical and Chemical Properties of Carbon .......... 333
    15.3. Pulsed Laser Deposition of DLC ...................... 335
          15.3.1. Effect of Wavelength and Fluence ............ 335
          15.3.2. Effect of Substrate Temperature and
                  Vacuum ...................................... 336
    15.4. Modifications to the Pulsed Laser Deposition
          Technique ........................................... 338
    15.5. Growth of DLC Films ................................. 339
    15.6. Reducing Internal Compressive Stress in DLC
          Thin Films .......................................... 340
    15.7. Hydrogenated and Hydrogen-Free DLC .................. 344
    15.8. Properties of DLC ................................... 346
    15.9. DLC Applications .................................... 347
          15.9.1. Medical Applications ........................ 347
          15.9.2. Mechanical and Tribological Applications .... 352
    15.10.Closing Remarks ..................................... 355
    References ................................................ 355

16. Pulsed Laser Deposition of Metals ......................... 363
       Hans-Ulrich Krebs
    16.1. Introduction ........................................ 363
    16.2. Deposition Technique ................................ 363
          16.2.1. Typical Setup ............................... 363
          16.2.2. Droplet Reduction ........................... 364
    16.3. Energetic Particles ................................. 365
          16.3.1. Formation of Energetic Particles ............ 365
          16.3.2. Influence on Film Growth .................... 367
    16.4. Deposition in Ultrahigh Vacuum ...................... 368
          16.4.1. Deposition Rate and Angular Distribution .... 368
          16.4.2. Stoichiometry Transfer ...................... 369
          16.4.3. Homogeneity of Alloy Films .................. 369
          16.4.4. Improved Film Growth ........................ 369
          16.4.5. Small Grain Size ............................ 371
          16.4.6. Internal Stress ............................. 371
          16.4.7. Defect Formation ............................ 371
          16.4.8. Interface Mixing ............................ 372
          16.4.9. Interface Roughness ......................... 372
          16.4.10.Metastable Phase Formation at Interfaces .... 372
          16.4.11.Resputtering Effects ........................ 373
    16.5. Deposition in Inert Gas Atmosphere .................. 373
          16.5.1. Reduction of Implantation and
                  Resputtering ................................ 373
          16.5.2. Changes in the Deposition Rate .............. 373
          16.5.3. Changes of Film Properties .................. 374
    16.6. Potential for Applications .......................... 375
          16.6.1. Nonequilibrium Phases ....................... 375
          16.6.2. Giant Magnetoresistance ..................... 376
          16.6.3. Soft and Hard Magnetic Materials ............ 376
          16.6.4. X-ray Mirrors ............................... 378
          16.6.5. Compound Materials .......................... 378
    16.7. Conclusions ......................................... 379
    References ................................................ 380

SECTION 4. .................................................... 383

17. Optica] Waveguide Growth and Applications ................. 385
       Robert W. Eason, Stephen J. Barrington, Christos
       Grivas, Timothy C. May-Smith, and David P. Shepherd
    17.1. Introduction ........................................ 385
    17.2. Thin-Film Waveguide Fabrication Methods ............. 386
          17.2.1. Waveguide Growth on an Existing Substrate ... 386
          17.2.2. Waveguide Definition in an Existing Host .... 387
          17.2.3. Pulsed Laser Deposition Waveguide Growth .... 387
    17.3. Waveguide Structures ................................ 388
    17.4. Optical Quality and Waveguide Loss .................. 390
          17.4.1. Waveguide Loss .............................. 391
          17.4.2. Loss Measurement Techniques ................. 392
          17.4.3. Particulates on the Waveguide Surface ....... 394
    17.5. Waveguides Grown by PLD ............................. 396
          17.5.1. Garnets ..................................... 396
          17.5.2. Oxide Materials ............................. 398
          17.5.3. Ferroelectrics .............................. 399
          17.5.4. Glasses ..................................... 400
          17.5.5. Semiconductors .............................. 400
    17.6. Waveguide Lasing Devices ............................ 401
          17.6.1. Introduction to PLD Waveguide Lasers and
                  Active Optical Devices ...................... 401
          17.6.2. Pulsed Laser Deposition Grown Waveguide
                  Lasers ...................................... 402
          17.6.3. Future Directions ........................... 413
    17.7. Conclusions and Closing Remarks: Tips for
          Successful Waveguide Growth ......................... 415
    References ................................................ 416

18. Biomaterials: New Issues and Breakthroughs for
    Biomedical Applications ................................... 421
       Valentin Nelea, Ion N. Mihailescu, and
       Miroslav Jelínek
    18.1. Introduction ........................................ 421
    18.2. Biomaterials ........................................ 422
          18.2.1. Biocompatible Materials Overview ............ 422
          18.2.2. Hydroxylapatite and Other Calcium
                  Phosphates .................................. 423
          18.2.3. Hydroxylapatite-Based Composites ............ 425
          18.2.4. Diamond-like Carbon and Carbon-Based
                  Materials ................................... 425
    18.3. Processing Methods .................................. 428
          18.3.1. Current Deposition Methods: Advantages and
                  Limitations ................................. 428
          18.3.2. Pulsed Laser Deposition of Hydroxylapatite
                  and Other Calcium Phosphate Thin Films ...... 431
          18.3.3. Pulsed Laser Deposition of Bioglass and
                  Other Bioceramics ........................... 440
    18.4. Characterization of Nanostructured Materials ........ 441
          18.4.1. Chemical Composition and Stoichiometry ...... 441
          18.4.2. Surface Morphology and Roughness
                  Parameters .................................. 443
          18.4.3. Structure and Crystallinity ................. 443
          18.4.4. Mechanical Properties and Performances ...... 444
    18.5. Biocompatibility Studies and Response to
          Living Media ........................................ 448
          18.5.1. Overview of Biomedical Tests ................ 448
          18.5.2. Biomedical Applications of Laser-
                  Fabricated Hydroxylapatite and
                  Bioglass Layers ............................. 449
          18.5.3. Biomedical Application of Laser-Produced
                  Carbon and DLC Thin Films ................... 453
    18.6. Development Trends .................................. 454
    References ................................................ 456
 
19. Thermoelectric Materials .................................. 461
       Anne Dauscher and Bertrand Lenoir
    19.1. Introduction ........................................ 461
    19.2. Current State of Thermoelectricity .................. 462
    19.3. Thermoelectric Thin Films ........................... 465
          19.3.1. Pulsed Laser Deposition of Conventional
                  Thermoelectric Materials .................... 465
          19.3.2. Pulsed Laser Deposition of New
                  Thermoelectric Materials .................... 475
    19.4. Thermoelectric Microdevices and Applications ........ 479
    19.5. Conclusion .......................................... 481
    References ................................................ 482

20. Piezoelectrics ............................................ 487
       Floriana Craciun and Maria Dinescu
    20.1. Introduction ........................................ 487
    20.2. Optimization of the Deposition Conditions ........... 488
          20.2.1. Piezoelectric Thin Films with
                  Ferroelectric Properties .................... 488
          20.2.2. Nonferroelectric Piezoelectrics ............. 505
    20.3. Dielectric and Piezoelectric Properties ............. 506
          20.3.1. Effects of Internal Stress and Other
                  Factors on Ferroelectric Piezoelectric
                  Thin Films .................................. 506
          20.3.2. Finite Size Effects ......................... 515
          20.3.3. Domain-Wall Pinning and Relaxation .......... 516
    20.4. Applications ........................................ 519
          20.4.1. Microelectronic Devices ..................... 519
          20.4.2. Microelectromechanical Systems (MEMS) ....... 522
    20.5. Conclusions and Future Perspectives ................. 526
    References ................................................ 526

21. Ferroelectric Thin Films for Microwave Device
    Applications .............................................. 533
       Chonglin Chen and Jim S. Horwitz
    21.1. Introduction ........................................ 533
          21.1.1. Microwave Oscillators ....................... 534
          21.1.2. Microwave Phase Shifters .................... 535
          21.1.3. Filters ..................................... 535
    21.2. Epitaxial Growth of Ferroelectric Thin Films by
          Pulsed Laser Ablation ............................... 535
          21.2.1. Optimal Growth Conditions and Effects
                  on the Epitaxy .............................. 535
          21.2.2. Epitaxial Growth of Ferroelectric
                  (Ba,Sr)TiO3 Thin Films ...................... 539
          21.2.3. Epitaxial Growth of Ferroelectric
                  (Pb,Sr)Ti)3 Thin Films ...................... 541
          21.2.4. Other Ferroelectric Thin Films .............. 543
    21.3. Characterizations of Ferroelectric Thin Films ....... 544
          21.3.1. Microstructure, Composition, Surface
                  Morphology, and Epitaxial Behavior .......... 545
          21.3.2. Dielectric Properties of Ferroelectric
                  Thin Films .................................. 549
    21.4. Defects in Ferroelectric Thin Films at
          High Frequencies .................................... 550
          21.4.1. Point Defects ............................... 550
          21.4.2. Strain Effects on Dielectric Properties ..... 552
          21.4.3. Formation of Antidomain Structures in
                  Ferroelectric Thin Films .................... 554
          21.4.4. Effects from Vicinal Surfaces ............... 556
    21.5. Techniques to Improve Dielectric Properties of
          Ferroelectric Thin Films ............................ 557
    21.6. Summary ............................................. 558
    References ................................................ 559

22. Films for Electrochemical Applications .................... 563
       Macarena J. Montenegro and Thomas Lippert
    22.1. Introduction ........................................ 563
          22.1.1. Description and History of the Most
                  Important Electrochemical Systems ........... 564
    22.2. Selected Electrochemical Materials Prepared
          by PLD .............................................. 568
          22.2.1. Spinels ..................................... 568
          22.2.2. Perovskites ................................. 569
    22.3. Applications of PLD Films ........................... 569
          22.3.1. Spinels in Li Ion Batteries ................. 569
          22.3.2. Perovskites in Solid Oxide Fuel Cells ....... 574
          22.3.3. Perovskites in Rechargeable Zn-Air
                  Batteries ................................... 576
    22.4. Other Electrochemically Active Materials Deposited
          by PLD .............................................. 579
          22.4.1. NASICON ..................................... 579
          22.4.2. Noble Metals in Polymer Electrolyte
                  Membrane Fuel Cells ......................... 580
    22.5. Future Directions: Diamond-like Carbon .............. 581
    22.6. Conclusion .......................................... 581
    References ................................................ 582

23. Pulsed Laser Deposition of Tribological Coatings .......... 585
    Andrey A. Voevodin, Jeffrey S. Zabinski, and
    John G. Jones
    23.1. Introduction ........................................ 585
    23.2. Pulsed Laser Deposition Configuration
          for Tribological Coating Growth ..................... 586
    23.3. Correlations Between Process Parameters,
          Plasma Characteristics, and Tribological
          Coating Properties .................................. 587
          23.3.1. Laser Wavelength and Fluence ................ 587
          23.3.2. Background Gas Effects and Target
                  to Substrate Distance ....................... 588
          23.3.3. Substrate Bias Influence .................... 590
          23.3.4. Substrate Temperature ....................... 591
    23.4. Plasma Characterization, Sensors, and
          Process Control ..................................... 592
          23.4.1. Plasma Characterization ..................... 592
          23.4.2. Real-Time Sensors ........................... 593
          23.4.3. Process Control ............................. 593
    23.5. Hybrids of PLD with Other Deposition Techniques ..... 596
          23.5.1. Hybrid of Magnetron Sputtering and Pulsed
                  Laser Deposition ............................ 596
          23.5.2. Hybrid of Ion Beam and Pulsed Laser
                  Deposition .................................. 598
    23.6. Tribological Coatings Produced by PLD and Hybrid
          Techniques .......................................... 601
          23.6.1. Monolithic Coatings ......................... 601
          23.6.2. Functionally Gradient and
                  Nanolayered Coatings ........................ 602
          23.6.3. Nanocrystalline/Amorphous Composites ........ 605
          23.6.4. Multifunctional and Adaptive Coatings ....... 606
    23.7. Future Directions ................................... 607
    References ................................................ 608

SECTION 5 ..................................................... 611

24. Laser Ablation Synthesis of Single-Wall Carbon
    Nanotubes: The SLS Model .................................. 613
       André Gorbunoff and Oliver Jost
    24.1. Introduction ........................................ 613
    24.2. Laser-Furnace Technique ............................. 616
          24.2.1. Typical Experimental Setup .................. 616
          24.2.2. Characterization of SWNTs-Containing Soot ... 617
    24.3. Solid-Liquid-Solid SWNT Formation Model ............. 620
          24.3.1. Condensed-State Process ..................... 621
          24.3.2. Nucleation of SWNTs ......................... 622
          24.3.3. Nonequilibrium Melting of Catalyst
                  Particles ................................... 624
          24.3.4. Wetting Factor .............................. 626
          24.3.5. The SLS Model ............................... 626
          24.3.6. First Second of the SWNT Life ............... 627
          24.3.7. Optimization of SWNT Synthesis .............. 628
    24.4. Conclusions ......................................... 629
    References ................................................ 630

25. Quasicrystalline Thin Films ............................... 633
       Philip R. Willmott
    25.1. Introduction ........................................ 633
    25.2. Present Status of Thin-Film Growth
          of Quasicrystals .................................... 634
          25.2.1. General Problems ............................ 635
          25.2.2. Growth Techniques ........................... 635
    25.3. Pulsed Laser Deposition of Quasicrystals ............ 635
          25.3.1. Why PLD? .................................... 635
    25.4. Summary and Outlook ................................. 644
    References ................................................ 647
 
INDEX ......................................................... 649


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:22 2019. Размер: 39,138 bytes.
Посещение N 1387 c 28.09.2010