Lappa M. Thermal convection: patterns, evolution and stability (Chichester, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLappa M. Thermal convection: patterns, evolution and stability. - Chichester: Wiley, 2010. - xx, 670 p.: ill. - Ref.: p.609-657. - Ind.: p.659-670. - ISBN 978-0-470-69994-2
 

Оглавление / Contents
 
Preface ........................................................ xv
Acknowledgements .............................................. xix
1.  Equations, General Concepts and Methods of Analysis ......... 1
    1.1.  Pattern Formation and Nonlinear Dynamics .............. 1
          1.1.1.  Some Fundamental Concepts: Pattern,
                  Interrelation and Scale ....................... 2
          1.1.2.  PDEs, Symmetry and Nonequilibrium Phenomena ... 4
    1.2.  The Navier-Stokes Equations ........................... 6
          1.2.1.  A Satisfying Microscopic Derivation of the
                  Balance Equations ............................. 6
          1.2.2.  A Statistical Mechanical Theory of Transport
                  Processes ..................................... 7
          1.2.3.  The Continuity Equation ....................... 9
          1.2.4.  The Momentum Equation ........................ 10
          1.2.5.  The Total Energy Equation .................... 11
          1.2.6.  The Budget of Internal Energy ................ 13
          1.2.7.  Newtonian Fluids ............................. 13
          1.2.8.  Some Considerations About the Dynamics of
                  Vorticity .................................... 15
          1.2.9.  Incompressible Formulation of the Balance
                  Equations .................................... 18
          1.2.10. Nondimensional Form of the Equations for
                  Thermal Problems ............................. 19
    1.3.  Energy Equality and Dissipative Structures ........... 21
    1.4.  Flow Stability, Bifurcations and Transition to
          Chaos ................................................ 25
    1.5.  Linear Stability Analysis: Principles and Methods .... 27
          1.5.1.  Conditional Stability and Infinitesimal
                  Disturbances ................................. 27
          1.5.2.  The Exponential Matrix and the Eigenvalue
                  Problem ...................................... 28
          1.5.3.  Linearization of the Navier-Stokes
                  Equations .................................... 30
          1.5.4.  A Simple Example: The Stability of a
                  Parallel Flow with an Inflectional Velocity
                  Profile ...................................... 32
          1.5.5.  Weaknesses and Limits of the Linear
                  Stability Approach ........................... 35
    1.6.  Energy Stability Theory .............................. 36
          1.6.1.  A Global Budget for the Generalized
                  Disturbance Energy ........................... 36
          1.6.2.  The Extremum Problem ......................... 39
    1.7.  Numerical Integration of the Navier-Stokes
          Equations ............................................ 40
          1.7.1.  Vorticity Methods ............................ 41
          1.7.2.  Primitive Variables Methods .................. 42
    1.8.  Some Universal Properties of Chaotic States .......... 46
          1.8.1.  Feigenbaum, Ruelle-Takens and Manneville-
                  Pomeau Scenarios ............................. 46
          1.8.2.  Phase Trajectories, Attractors and Strange
                  Attractors ................................... 47
          1.8.3.  The Lorenz Model and the Butterfly Effect .... 48
          1.8.4.  A Possible Quantification of SIC: The
                  Lyapunov Spectrum ............................ 51
          1.8.5.  The Mandelbrot Set: The Ubiquitous
                  Connection Between Chaos and Fractals ........ 53
    1.9     The Maxwell Equations .............................. 58
2.  Classical Models, Characteristic Numbers and Scaling
    Arguments .................................................. 63
    2.1.  Buoyancy Convection and the Boussinesq Model ......... 64
    2.2.  Convection in Space .................................. 66
          2.2.1.  A Definition of Microgravity ................. 66
          2.2.2.  Experiments in Space ......................... 67
          2.2.3.  Surface Tension-driven Flows ................. 68
          2.2.4.  Acceleration Disturbances on Orbiting
                  Platforms and Vibrational Flows .............. 68
    2.3.  Marangoni Flow ....................................... 70
          2.3.1.  The Genesis and Relevant Nondimensional
                  Numbers ...................................... 71
          2.3.2.  Microzone Facilities and Microscale
                  Experimentation .............................. 75
          2.3.3.  A Paradigm Model: The Liquid Bridge .......... 75
    2.4.  Exact Solutions of the Navier-Stokes Equations for
          Thermal Problems ..................................... 78
          2.4.1.  Thermogravitational Convection: The Hadley
                  Flow ......................................... 80
          2.4.2.  Marangoni Flow ............................... 80
          2.4.3.  Hybrid States ................................ 83
          2.4.4.  General Properties ........................... 83
          2.4.5.  The Infinitely Long Liquid Bridge ............ 85
          2.4.6.  Inclined Systems ............................. 86
    2.5.  Conductive, Transition and Boundary-layer Regimes .... 89
3.  Examples of Thermal Fluid Convection and Pattern
    Formation in Nature and Technology ......................... 95
    3.1.  Technological Processes: Small-scale Laboratory and
          Industrial Setups .................................... 95
          3.1.1.  Crystal Growth from the Melt: Typical
                  Techniques ................................... 96
          3.1.2.  Detrimental Effects Induced by Convective
                  Phenomena .................................... 101
    3.2.  Examples of Thermal Fluid Convection and Pattern
          Formation at the Mesoscale ........................... 103
    3.3.  Planetary Structure and Dynamics: Convective
          Phenomena ............................................ 103
          3.3.1.  Earth's 'Layered' Structure .................. 103
          3.3.2.  Earth's Mantle Convection .................... 104
          3.3.3.  Plate Tectonics Theory ....................... 104
          3.3.4.  Earth's Core Convection ...................... 106
          3.3.5.  The Icy Galilean Satellites .................. 107
    3.4.  Atmospheric and Oceanic Phenomena .................... 108
          3.4.1.  A Fundamental Model: The Hadley
                  Circulation .................................. 108
          3.4.2.  Mesoscale Shallow Cellular Convection:
                  Collection of Clouds and Related Patterns .... 110
          3.4.3.  The Planetary Boundary Layer ................. 112
          3.4.4.  Atmospheric Convection in Other Solar
                  System Bodies ................................ 116
4.  Thermogravitational Convection: The Rayleigh-Benard
    Problem .................................................... 119
    4.1.  Nonconfined Fluid Layers and Ideal Straight Rolls .... 119
          4.1.1.  The Linearized Problem: Primary Convective
                  Modes ........................................ 119
          4.1.2.  Systems Heated from Above: Internal Gravity
                  Waves ........................................ 122
    4.2.  The Busse Balloon .................................... 124
          4.2.1.  Toroidal-Poloidal Decomposition .............. 125
          4.2.2.  The Zoo of Secondary Modes ................... 127
    4.3.  Some Considerations About the Role of Dislocation
          Dynamics ............................................. 133
    4.4.  Tertiary and Quaternary Modes of Convection .......... 135
    4.5.  Spoke Pattern Convection ............................. 138
    4.6.  Spiral Defect Chaos, Hexagons and Squares ............ 142
    4.7.  Convection with Lateral Walls ........................ 149
    4.8.  Two-dimensional Models ............................... 151
          4.8.1.  Distinct Modes of Convection and Possible
                  Symmetries ................................... 151
          4.8.2.  Higher Modes of Convection and Oscillatory
                  Regimes ...................................... 155
    4.9.  Three-dimensional Parallelepipedic Enclosures:
          Classification of Solutions and Possible
          Symmetries ........................................... 157
          4.9.1.  The Cubical Box .............................. 160
          4.9.2.  The Onset of Time Dependence ................. 161
    4.10. The Circular Cylindrical Problem ..................... 165
          4.10.1. Moderate Aspect Ratios: Azimuthal Structure
                  and Effect of Lateral Boundary Conditions .... 165
          4.10.2. Small Aspect Ratios: Targets and PanAm
                  Textures ..................................... 170
    4.11. Spirals: Genesis, Properties and Dynamics ............ 173
          4.11.1. The Archimedean Spiral ....................... 175
          4.11.2. Spiral Wavenumber ............................ 175
          4.11.3. Multi-armed Spirals and Spiral Core
                  Instability .................................. 176
    4.12. From Spirals to SDC: The Extensive Chaos Problem ..... 179
    4.13. Three-dimensional Convection in a Spherical Shell .... 182
          4.13.1. Possible Patterns of Convection and Related
                  Symmetries ................................... 183
          4.13.2. The Heteroclinic Cycles ...................... 183
          4.13.3. The Highly Viscous Case ...................... 185
          4.13.4. The Geodynamo Problem ........................ 188
    5.  The Dynamics of Thermal Plumes and Related Regimes of
        Motion ................................................. 195
    5.1.  Introduction ......................................... 195
    5.2.  Free Plume Regimes ................................... 196
          5.2.1.  The Diffusive-Viscous Regime ................. 197
          5.2.2.  The Viscous-Nondiffusive Regime .............. 198
          5.2.3.  The Inviscid-Diffusive Regime ................ 198
          5.2.4.  The Inviscid-Nondiffusive Regime ............. 200
          5.2.5.  Sinuous Instabilities Created by Horizontal
                  Shear ........................................ 200
          5.2.6.  Geometric Constraints ........................ 201
    5.3.  The Flywheel Mechanism: The 'Wind' of Turbulence ..... 202
          5.3.1.  Upwelling and Downward Jets and Alternating
                  Eruption of Thermal Plumes ................... 203
          5.3.2.  Geometric Effects ............................ 204
          5.3.3.  The Origin of the Large-scale Circulation:
                  The Childress and Villermaux Theories ........ 205
          5.3.4.  The Role of Thermal Diffusion in Turbulent
                  Rayleigh-Benard Convection ................... 208
    5.4.  Multiplume Configurations Originated from Discrete
          Sources of Buoyancy .................................. 208
6.  Systems Heated from the Side: The Hadley Flow .............. 215
    6.1.  The Infinite Horizontal Layer ........................ 215
          6.1.1.  The Hadley Flow and its General Perturbing
                  Mechanisms ................................... 216
          6.1.2.  Hydrodynamic Modes and Oscillatory
                  Longitudinal Rolls ........................... 219
          6.1.3.  The Rayleigh Mode ............................ 223
          6.1.4.  Competition of Disturbances and Tertiary
                  Modes of Convection .......................... 225
    6.2.  Two-dimensional Horizontal Enclosures ................ 228
          6.2.1.  Geometric Constraints and Multiplicity of
                  Solutions .................................... 228
          6.2.2.  Instabilities Originating from Boundary
                  Layers and Patterns with Internal Waves ...... 235
    6.3.  The Infinite Vertical Layer: Cats-eye Patterns and
          Temperature Waves .................................... 247
    6.4.  Three-dimensional Parallelepipedic Enclosures ........ 253
    6.5.  Cylindrical Geometries under Various Heating
          Conditions ........................................... 262
7.  Thermogravitational Convection in Inclined Systems ......... 271
    7.1.  Inclined Layer Convection ............................ 272
          7.1.1.  The Codimension-two Point .................... 273
          7.1.2.  Tertiary and High-order Modes of
                  Convection ................................... 275
    7.2.  Inclined Side-heated Slots ........................... 279
          7.2.1.  Stationary Longitudinal Long-wavelength
                  Instability .................................. 281
          7.2.2.  Stationary Transversal Instability ........... 282
          7.2.3.  Oscillatory Transversal Long-wavelength
                  Instability .................................. 284
          7.2.4.  Stationary Longitudinal Short-wavelength
                  Instability .................................. 284
          7.2.5.  Oscillatory Longitudinal Instability ......... 284
          7.2.6.  Interacting Longitudinal and Transversal
                  Multicellular Modes .......................... 286
8.  Thermovibrational Convection ................................289
    8.1.  Equations and Relevant Parameters .................... 289
    8.2.  Fields Decomposition ................................. 290
    8.3.  The TFD Distortions .................................. 291
    8.4.  High Frequencies and the Thermovibrational Theory .... 293
    8.5.  States of Quasi-equilibrium and Related Stability .... 294
          8.5.1.  The Vibrational Hydrostatic Conditions ....... 294
          8.5.2.  The Linear Stability Problem ................. 295
          8.5.3.  Solutions for the Infinite Layer ............. 297
    8.6.  Primary and Secondary Patterns of Symmetry ........... 299
    8.7.  Medium and Low Frequencies: Possible Regimes and
          Flow Patterns ........................................ 303
          8.7.1.  Synchronous, Subharmonic and Nonperiodic
                  Response ..................................... 303
          8.7.2.  Reduced Equations and Related Ranges of
                  Validity ..................................... 305
9.  Marangoni-Benard Convection ................................ 317
    9.1.  Introduction ......................................... 317
    9.2.  High Prandtl Number Liquids: Patterns with
          Hexagons, Squares and Triangles ...................... 320
    9.3.  Liquid Metals: Inverted Hexagons and High-order
          Solutions ............................................ 325
    9.4.  Effects of Lateral Confinement ....................... 326
          9.4.1.  Circular Containers .......................... 328
          9.4.2.  Rectangular Containers ....................... 331
    9.5.  Temperature Gradient Inclination ..................... 334
10.  Thermocapillary Convection ................................ 341
    10.1. Basic Features of Steady Marangoni Convection ........ 342
    10.2. Stationary Multicellular Flow and Hydrothermal
          Waves ................................................ 345
          10.2.1. Basic Velocity Profiles: The Linear and
                  Return Flows ................................. 346
          10.2.2. Linear Stability Analysis .................... 346
          10.2.3. Weakly Nonlinear Analysis .................... 354
          10.2.4. Boundary Effects: 2D and 3D Numerical
                  Studies ...................................... 359
    10.3. Annular Configurations ............................... 368
    10.4. The Liquid Bridge .................................... 375
          10.4.1. Historical Perspective ....................... 375
          10.4.2. Liquid Metals and Semiconductor Melts ........ 378
          10.4.3. The First Bifurcation: Structure of the
                  Secondary 3D Steady Flow ..................... 379
          10.4.4. Effect of Geometric Parameters ............... 381
          10.4.5. A Generalized Theory for the Azimuthal
                  Wavenumber ................................... 389
          10.4.6. The Second Bifurcation: Tertiary Modes of
                  Convection ................................... 390
          10.4.7. High Prandtl Number Liquids .................. 393
          10.4.8. Standing Waves and Travelling Waves .......... 399
          10.4.9. Symmetric and Asymmetric Oscillatory Modes
                  of Convection ................................ 407
          10.4.10.System Dynamic Evolution ..................... 412
          10.4.11.The Hydrothermal Mechanism in Liquid
                  Bridges ...................................... 417
          10.4.12.Noncylindrical Liquid Bridges ................ 421
          10.4.13.The Intermediate Range of Prandtl Numbers .... 423
11. Mixed Buoyancy-Marangoni Convection ........................ 427
    11.1. The Canonical Problem: The Infinite Horizontal
          Layer ................................................ 429
    11.2. Finite-sized Systems Filled with Liquid Metals ....... 436
    11.3. Typical Terrestrial Laboratory Experiments with
          Transparent Liquids .................................. 449
    11.4. The Rectangular Liquid Layer ......................... 450
          11.4.1. Waves and Multicellular Patterns ............. 450
          11.4.2. Tertiary Modes of Convection: OMC and HTW
                  with Spatiotemporal Dislocations ............. 456
    11.5. Effects Originating from the Walls ................... 458
          11.5.1. Lateral Boundaries as a Permanent
                  Stationary Disturbance ....................... 459
          11.5.2. Collision Phenomena of HTW and Wall-
                  generated Steady Patterns .................... 460
          11.5.3. Streaks Generated by a Lift-up Process and
                  Instabilities of a Mechanical Nature ......... 464
    11.6. The Open Vertical Cavity ............................. 468
          11.6.1. Volume Driving Actions and Rising Thermal
                  Plumes ....................................... 470
          11.6.2. Aiding Marangoni and Buoyant Flows ........... 470
          11.6.3. Counteracting Driving Forces and Separation
                  Phenomena .................................... 472
          11.6.4. Surface Driving Actions and Vertical
                  Temperature Gradients ........................ 474
    11.7. The Annular Pool ..................................... 475
          11.7.1. Target-like Wave Patterns (HW2) .............. 476
          11.7.2. Waves with Spiral Pattern (HW1) .............. 478
          11.7.3. Stationary Radial Rolls ...................... 480
          11.7.4. Progression Towards Chaos and Fractal
                  Behaviour .................................... 483
          11.7.5. The Reverse Annular Configuration:
                  Incoherent Spatial Dynamics .................. 487
          11.7.6. Some Considerations About the Role of
                  Curvature, Heating Direction and Gravity ..... 488
    11.8. The Liquid Bridge on the Ground ...................... 491
          11.8.1. Microscale Experiments ....................... 492
          11.8.2. Heating from Above or from Below ............. 499
          11.8.3. The Route to Aperiodicity .................... 510
12. Hybrid Regimes with Vibrations ............................. 517
    12.1. RB Convection with Vertical Shaking .................. 519
    12.2. Complex Order, Quasi-periodic Crystals and
          Superlattices ........................................ 525
          12.2.1. Purely Harmonic Patterns ..................... 527
          12.2.2. Purely Subharmonic Patterns .................. 529
          12.2.3. Coexistence and Complex Order ................ 529
    12.3. RB Convection with Horizontal or Oblique Shaking ..... 533
    12.4. Laterally Heated Systems and Parametric Resonances ... 538
          12.4.1. The Infinite Horizontal Layer ................ 538
          12.4.2. Domains with Vertical Walls .................. 544
          12.4.3. The Infinite Vertical Layer .................. 548
          12.4.4. Inclined Systems ............................. 550
    12.5. Control of Thermogravitational Convection ............ 550
          12.5.1. Cell Orientation as a Means to Mitigate
                  Convective Disturbances on Orbiting
                  Platforms .................................... 551
          12.5.2. Control of Convection Patterning and
                  Intensity in Shallow Enclosures .............. 553
          12.5.3. Modulation of Thermal Boundary Conditions .... 559
    12.6. Mixed Marangoni-Thermovibrational Convection ......... 561
          12.6.1  Basic Solutions .............................. 561
          12.6.2. Control of Convection Patterning and
                  Intensity in Shallow Enclosures .............. 566
          12.6.3. Control of Hydrothermal Waves ................ 567
    12.7  Modulation of Marangoni-Benard Convection ............ 575
13. Flow Control by Magnetic Fields ............................ 581
    13.1. Static and Uniform Magnetic Fields ................... 582
          13.1.1. Physical Principles and Governing
                  Equations .................................... 582
          13.1.2. Hartmann Boundary Layers ..................... 584
    13.2. Historical Developments and Current Status ........... 584
          13.2.1. Stabilization of Thermogravitational Flows ... 584
          13.2.2. Stabilization of Surface Tension-driven
                  Flows ........................................ 597
    13.3. Rotating Magnetic Fields ............................. 604
    13.4. Gradients of Magnetic Fields and Virtual
          Microgravity ......................................... 607

References ..................................................... 609

Index .......................................................... 659


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:21:22 2019. Размер: 26,326 bytes.
Посещение N 1569 c 28.09.2010