Applied scanning probe methods X: biomimetics and industrial applications (Berlin; Heidelberg, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаApplied scanning probe methods X: biomimetics and industrial applications / ed. by Bhushan B., Fuchs H., Tomitori M. - Berlin; Heidelberg: Springer, 2008. - lix, 427 p.: ill. (some col.). - (Nanoscience and technology). - Incl. bibl. ref. - Sub. ind.: p.413-427. - ISBN 3-540-74084-1; ISSN 1434-4904
 

Оглавление / Contents
 
27. Gecko Feet: Natural Attachment Systems for Smart
    Adhesion-Mechanism, Modeling, and Development of
    Bio-Inspired Materials
       Bharat Bhushan, Robert A. Sayer .......................... 1

    27.1. Introduction .......................................... 1
    27.2. Tokay Gecko ........................................... 2
          27.2.1. Construction of Tokay Gecko ................... 2
          27.2.2. Other Attachment Systems ...................... 5
          27.2.3. Adaptation to Surface Roughness ............... 7
          27.2.4. Peeling ....................................... 8
          27.2.5. Self-Cleaning ................................ 10
    27.3. Attachment Mechanisms ................................ 12
          27.3.1. Van der Waals Forces ......................... 12
          27.3.2. Capillary Forces ............................. 13
    27.4. Experimental Adhesion Test Techniques and Data ....... 14
          27.4.1. Adhesion Under Ambient Conditions ............ 15
          27.4.2. Effects of Temperature ....................... 17
          27.4.3. Effects of Humidity .......................... 18
          27.4.4. Effects of Hydrophobicity .................... 18
    27.5. Adhesion Modeling .................................... 19
          27.5.1. Spring Model ................................. 21
          27.5.2. Single Spring Contact Analysis ............... 21
          27.5.3. The Multilevel Hierarchical Spring
                  Analysis ..................................... 23
          27.5.4. Adhesion Results for the Gecko Attachment
                  System Contacting a Rough Surface ............ 26
          27.5.5. Capillarity Effects .......................... 30
          27.5.6. Adhesion Results that Account for
                  Capillarity Effects .......................... 31
    27.6. Modeling of Biomimetic Fibrillar Structures .......... 34
          27.6.1. Fiber Model .................................. 34
          27.6.2. Single Fiber Contact Analysis ................ 34
          27.6.3. Constraints .................................. 35
          27.6.4. Numerical Simulation ......................... 39
          27.6.5. Results and Discussion ....................... 41
    27.7. Fabrication of Biomimetric Gecko Skin ................ 48
          27.7.1. Single-Level Hierarchical Structures ......... 49
          27.7.2. Multilevel Hierarchical Structures ........... 53
    27.8. Closure .............................................. 55
    Appendix ................................................... 56
    References ................................................. 59

28. Carrier Transport in Advanced Semiconductor Materials
       Filippo Giannazzo, Patrick Fiorenza, Vito Raineri ....... 63

    28.1. Majority Carrier Distribution in Semiconductors:
          Imaging and Quantification ........................... 64
          28.1.1. Basic Principles of SCM ...................... 64
          28.1.2. Carrier Imaging Capability by SCM ............ 67
          28.1.3. Quantification of SCM Raw Data ............... 70
          28.1.4. Basic Principles of SSRM ..................... 78
          28.1.5. Carrier Imaging Capability by SSRM ........... 81
          28.1.6. Quantification of SSRM Raw Data .............. 81
          28.1.7. Drift Mobility by SCM and SSRM ............... 85
    28.2. Carrier Transport Through Metal-Semiconductor
          Barriers by C-AFM .................................... 88
    28.3. Charge Transport in Dielectrics by C-AFM ............. 93
          28.3.1. Direct Determination of Breakdown ............ 97
          28.3.2. Weibull Statistics by C-AFM .................. 99
    28.4. Conclusion .......................................... 101
    References ................................................ 101

29. Visualization of Fixed Charges Stored in Condensed
    Matter and Its Application to Memory Technology
       Yasuo Cho .............................................. 105

    29.1. Introduction ........................................ 105
    29.2. Principle and Theory for SNDM ....................... 106
    29.3. Microscopic Observation of Area Distribution of
          the Ferroelectric Domain Using SNDM ................. 107
    29.4. Visualization of Stored Charge in Semiconductor
          Flash Memories Using SNDM ........................... 109
    29.5. Higher-Order SNDM ................................... 110
    29.6. Noncontact SNDM ..................................... 111
    29.7. SNDM for 3D Observation of Nanoscale Ferroelectric
          Domains ............................................. 112
    29.8. Next-Generation Ultra-High-Density Ferroelectric
          Data Storage Based on SNDM .......................... 114
          29.8.1. Overview of Ferroelectric Data Storage ...... 114
          29.8.2. SNDM Nanodomain Engineering System and
                  Ferroelectric Recording Medium .............. 116
          29.8.3. Nanodomain Formation in а LiTaO3
                  Single Crystal .............................. 117
          29.8.4. High-Speed Switching of Nanoscale
                  Ferroelectric Domains in Congruent
                  Single-Crystal LiTa03 ....................... 120
          29.8.5. Prototype of a High-Density Ferroelectric
                  Data Storage System ......................... 122
          29.8.6. Realization of 10 Tbit/in.2 Memory
                  Density ..................................... 126
    29.9. Outlook ............................................. 128
    References ................................................ 129

30. Applications of Scanning Probe Methods in
    Chemical Mechanical Planarization
       Toshi Kasai, Bharat Bhushan ............................ 131
    
    30.1. Overview of CMP Technology and the Need for SPM ..... 131
          30.1.1. CMP Technology and Its Key Elements ......... 131
          30.1.2. Various CMP Processes and the Need
                  for SPM ..................................... 134
    30.2. AFP for the Evaluation of Dishing and Erosion ....... 137
    30.3. Surface Planarization and Roughness
          Characterization in CMP Using AFM ................... 141
    30.4. Use of Modified Atomic Force Microscope Tips
          for Fundamental Studies of CMP Mechanisms ........... 144
    30.5. Conclusions ......................................... 149
    References ................................................ 149

31. Scanning Probe Microscope Application for Single
    Molecules in а π-Conjugated Polymer Toward Molecular
    Devices Based on Polymer Chemistry
       Ken-ichi Shinohara ..................................... 153

    31.1. Introduction ........................................ 153
    31.2. Chiral Helical π-Conjugated Polymer ................. 154
          31.2.1. Helical Chirality of а π-Conjugated Main
                  Chain Induced by Polymerization of
                  Phenylacetylene with Chiral Bulky Groups .... 156
          31.2.2. Direct Measurement of the Chiral
                  Quaternary Structure in a π-Conjugated
                  Polymer ..................................... 158
          31.2.3. Direct Measurement of Structural Diversity
                  in Single Molecules of a Chiral Helical
                  π-Conjugated Polymer ........................ 163
          31.2.4. Dynamic Structure of Single Molecules
                  in a Chiral Helical π-Conjugated Polymer
                  by a High-Speed AFM ......................... 166
    31.3. Supramolecular Chiral π-Conjugated Polymer .......... 169
          31.3.1. Simultaneous Imaging of Structure and
                  Fluorescence of a Supramolecular Chiral
                  π-Conjugated Polymer ........................ 169
          31.3.2. Dynamic Structure of a Supramolecular
                  Chiral π-Conjugated Polymer by a High-
                  Speed AFM ................................... 177
    References ................................................ 181

32. Scanning Probe Microscopy on Polymer Solar Cells
       Joachim Loos, Alexander Alexeev ........................ 183

    32.1. Brief Introduction to Polymer Solar Cells ........... 184
    32.2. Sample Preparation and Characterization
          Techniques .......................................... 188
    32.3. Morphology Features of the Photoactive Layer ........ 190
          32.3.1. Influence of Composition and Solvents on
                  the Morphology of the Active Layer .......... 190
          32.3.2. Influence of Annealing ...................... 193
          32.3.3. All-Polymer Solar Cells ..................... 199
    32.4. Nanoscale Characterization of Properties of the
          Active Layer ........................................ 201
          32.4.1. Local Optical Properties As Measured by
                  Scanning Near-Field Optical Microscopy ...... 201
          32.4.2. Characterization of Nanoscale Electrical
                  Properties .................................. 203
    32.5. Summary and Outlook ................................. 212
    References ................................................ 213

33. Scanning Probe Anodization for Nanopatterning
       Hiroyuki Sugimura ...................................... 217

    33.1. Introduction ........................................ 217
    33.2. Electrochemical Origin of SPM-Based Local
          Oxidation ........................................... 218
    33.3. Variation in Scanning Probe Anodization ............. 223
          33.3.1. Patternable Materials in Scanning Probe
                  Anodization ................................. 223
          33.3.2. Environment Control in Scanning Probe
                  Anodization ................................. 226
          33.3.3. Electrochemical Scanning Surface
                  Modification Using Cathodic Reactions ....... 229
    33.4. Progress in Scanning Probe Anodization .............. 232
          33.4.1. From STM-Based Anodization to AFM-Based
                  Anodization ................................. 232
          33.4.2. Versatility of AFM-Based Scanning Probe
                  Anodization ................................. 233
          33.4.3. In Situ Characterization of Anodized
                  Structures by AFM-Based Methods ............. 233
          33.4.4. Technical Development of Scanning Probe
                  Anodization ................................. 237
    33.5. Lithographie Applications of Scanning Probe
          Anodization ......................................... 239
          33.5.1. Device Prototyping .......................... 239
          33.5.2. Pattern Transfer from Anodic Oxide to
                  Other Materials ............................. 240
          33.5.3. Integration of Scanning Probe Lithography
                  with Other High-Throughput Lithographies .... 247
          33.5.4. Chemical Manipulation of Nano-objects
                  by the Use of a Nanotemplate Prepared
                  by Scanning Probe Anodization ............... 248
    33.6. Conclusion .......................................... 251
    References ................................................ 251

34. Tissue Engineering: Nanoscale Contacts in Cell Adhesion
    to Substrates
       Mario D'Acunto, Paolo Giusti, Franco Maria
       Montevecchi, Gianluca Ciardelli ........................ 257

    34.1. Tissue Engineering: A Brief Introduction ............ 257
    34.2. Fundamental Features of Cell Motility
          and Cell-Substrates Adhesion ........................ 261
          34.2.1. Biomimetic Scaffolds, Roughness, and
                  Contact Guidance for Cell Adhesion
                  and Motility ................................ 268
    34.3. Experimental Strategies for Cell-ECM Adhesion
          Force Measurements .................................. 271
    34.4. Conclusions ......................................... 279
    34.5. Glossary ............................................ 279
    References ................................................ 280

35. Scanning Probe Microscopy in Biological Research
       Tatsuo Ushiki, Kazushige Kawabata ...................... 285

    35.1. Introduction ........................................ 285
    35.2. SPM for Visualization of the Surface of
          Biomaterials ........................................ 286
          35.2.1. Advantages of AFM in Biological Studies ..... 286
          35.2.2. AFMofBiomolecules ........................... 287
          35.2.3. AFM of Isolated Intracellular and
                  Extracellular Structures .................... 289
          35.2.4. AFM of Tissue Sections ...................... 292
          35.2.5. AFM of Living Cells and Their Movement ...... 292
          35.2.6. Combination of AFM with Scanning Near-
                  Field Optical Microscopy for Imaging
                  Biomaterials ................................ 294
    35.3. SPM for Measuring Physical Properties of
          Biomaterials ........................................ 296
          35.3.1. Evaluation Methods of Viscoelasticity ....... 296
          35.3.2. Examples for Viscoelasticity Mapping
                  Measurements ................................ 299
          35.3.3. Combination of Viscoelasticity Measurement
                  with Other Techniques ....................... 302
    35.4. SPM as a Manipulation Tool in Biology ............... 304
    35.5. Conclusion .......................................... 306
    References ................................................ 306

36. Novel Nanoindentation Techniques and Their Applications
       Jiping Ye .............................................. 309

    36.1. Introduction ........................................ 309
    36.2. Basic Principles of Contact ......................... 311
          36.2.1. Meyer's Law ................................. 311
          36.2.2. Elastic Contact Solution .................... 312
    36.3. Tip Rigidity and Geometry ........................... 313
    36.4. Hardness and Modulus Measurements ................... 314
          36.4.1. Analysis Method ............................. 314
          36.4.2. Practical Application Aspects ............... 316
          36.4.3. Recent Applications ......................... 320
    36.5. Yield Stress and Modulus Measurements ............... 324
          36.5.1. Analysis Method ............................. 324
          36.5.2. Recent Applications ......................... 326
    36.6. Work-Hardening Rate and Exponent Measurements ....... 329
          36.6.1. Analysis Method ............................. 329
          36.6.2. Practical Application Aspects ............... 333
          36.6.3. Recent Applications ......................... 335
    36.7. Viscoelastic Compliance and Modulus ................. 336
          36.7.1. Analysis Method ............................. 336
          36.7.2. Practical Application Aspects ............... 339
    36.8. Other Mechanical Characteristics .................... 342
    36.9. Outlook ............................................. 343
    References ................................................ 343

37. Applications to Nano-Dispersion Macromolecule Material
    Evaluation in an Electrophotographic Printer
       Yasushi Kadota ......................................... 347

    37.1. Introduction ........................................ 347
    37.2. Electrophotographic Processes ....................... 348
          37.2.1. Principle and Characteristics of an
                  Electrophotographic System .................. 348
          37.2.2. Microcharacteristic and Analysis
                  Technology for Functional Components ........ 349
    37.3. SPM Applications to Electrophotographic Systems ..... 352
          37.3.1. Measurement of Electrostatic Charge
                  of Toner .................................... 352
          37.3.2. Measurement of the Adhesive Force Between
                  a Particle and a Substrate .................. 353
          37.3.3. Observation of a Nanodispersion
                  Macromolecule Interface—Toner Adhesion to
                  a Fusing Roller ............................. 355
    37.4. Current Technology Subjects ......................... 357
    References ................................................ 357

38. Automated AFM as an Industrial Process Metrology Tool
    for Nanoelectronic Manufacturing
       Tianming Bao, David Fong, Sean Hand .................... 359

    38.1. Introduction ........................................ 359
    38.2. Dimensional Metrology with AFM ...................... 361
          38.2.1. Dimensional Metrology ....................... 361
          38.2.2. AFM Scanning Technology ..................... 362
          38.2.3. AFM Probe Technology ........................ 367
          38.2.4. AFM Metrology Capability .................... 367
    38.3. Applications in Semiconductors — Logic and
          Memory Integrated Circuits .......................... 370
          38.3.1. Shallow Trench Isolation Resist Pattern ..... 370
          38.3.2. STI Etch .................................... 372
          38.3.3. STI CMP ..................................... 375
          38.3.4. Gate Resist Pattern ......................... 378
          38.3.5. Gate Etch ................................... 379
          38.3.6. FinFET Gate Formation ....................... 383
          38.3.7. Gate Sidewall Spacer ........................ 385
          38.3.8. Strained SiGe Source/Drain Recess ........... 385
          38.3.9. Pre-metal Dielectric CMP .................... 386
          38.3.10.Contact and Via Photo Pattern ............... 387
          38.3.11.Contact Etch ................................ 387
          38.3.12.Contact CMP ................................. 389
          38.3.13.Metal Trench Photo Pattern .................. 390
          38.3.14.Metal Trench Etch ........................... 390
          38.3.15.Via Etch .................................... 392
          38.3.16.Via Etch .................................... 394
          38.3.17.Roughness ................................... 396
          38.3.18.LWR, LER, and SWR ........................... 397
          38.3.19.DRAM DT Capacitor ........................... 397
          38.3.20 Ferroelectric RAM Capacitor ................. 398
          38.3.21.Optical Proximity Correction ................ 398
    38.4. Applications in Photomask ........................... 399
          38.4.1. Photomask Pattern and Etch .................. 399
          38.4.2. Photomask Defect Review and Repair .......... 400
    38.5. Applications in Hard Disk Manufacturing ............. 401
          38.5.1. Magnetic Thin-Film Recording Head ........... 401
          38.5.2. Slider for Hard Drive ....................... 405
    38.6. Applications in Microelectromechanical
          System Devices ...................................... 406
          38.6.1. Contact Image Sensor ........................ 406
          38.6.2. Digital Light Processor Mirror Device ....... 408
    38.7. Challenge and Potential Improvement ................. 408
    38.8. Conclusion .......................................... 409
    References ................................................ 411

Subject Index ................................................. 413


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:20:34 2019. Размер: 23,918 bytes.
Посещение N 2301 c 03.11.2009