Applied scanning probe methods VI: characterization (Berlin; Heidelberg, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаApplied scanning probe methods VI: characterization / ed. by Bhushan B., Kawata S. - Berlin; Heidelberg: Springer, 2007. - xli, 338 p.: ill. - (Nanoscience and technology). - Incl. bibl. ref. - Sub. ind.: p.325-338. - ISBN 3-540-37318-7; ISSN 1434-4904
 

Оглавление / Contents
 
11. Scanning Tunneling Microscopy of Physisorbed Monolayers:
    From Self-Assembly to Molecular Devices
       Thomas Müller ............................................ 1

    11.1. Introduction .......................................... 1
    11.2. Source of Image Contrast: Geometric and
          Electronic Factors .................................... 2
    11.3. Two-Dimensional Self-Assembly: Chemisorbed
          and Physisorbed Systems ............................... 4
    11.4. Self-Assembly on Graphite ............................. 6
          11.4.1. Alkane Functionalization and Driving Forces
                  for Self-Assembly ............................. 6
          11.4.2. Expression of Chirality ...................... 11
    11.5. Beyond Self-Assembly ................................. 14
          11.5.1. Postassembly Modification .................... 14
          11.5.2. Templates for Bottom-Up Assembly ............. 21
    11.6. Toward Molecular Devices ............................. 23
          11.6.1. Ring Systems and Electronic Structure ........ 23
          11.6.2. Model Systems for Molecular Electronics ...... 25
    11.7. Summary and Conclusions .............................. 28
    References ................................................. 28

12. Tunneling Electron Spectroscopy Towards Chemical
    Analysis of Single Molecules
       Tadahiro Komeda ......................................... 31

    12.1. Introduction ......................................... 31
    12.2. Vibrational Excitation Through Tunneling Electron
          Injection ............................................ 32
          12.2.1. Characteristic Features of the Scanning
                  Tunneling Microscope as an Electron Source ... 32
          12.2.2. Electron-Induced Vibrational Excitation
                  Mechanism .................................... 33
    12.3. IET Process of Vibrational Excitation ................ 36
          12.3.1. Basic Mechanism of Vibrational Excitation
                  in the IET Process ........................... 37
          12.3.2. IETS with the Setup of STM ................... 39
          12.3.3. Instrumentation of IETS with the Use
                  of STM ....................................... 40
          12.3.4. Examples of STM-IET3 Measurements ............ 41
          12.3.5. Theoretical Treatment of STM-IETS Results .... 44
          12.3.6. IETS Mapping ................................. 48
    12.4. Manipulation of Single Molecule Through
          Vibrational Excitation ............................... 49
          12.4.1. Desorption via Vibrational Excitation ........ 49
          12.4.2. Vibration-Induced Hopping .................... 51
          12.4.3. Vibration-Induced Chemical Reaction .......... 54
    12.5. Action Spectroscopy .................................. 55
          12.5.1. Rotation of cis-2-Butene Molecules ........... 56
          12.5.2. Complimentary Information of Action
                  Spectroscopy and IETS ........................ 57
    12.6. Conclusions .......................................... 60
    References ................................................. 61

13. STM Studies on Molecular Assembly at Solid/Liquid
    Interfaces
       Ryo Yamada, Kohei Uosaki ................................ 65

    13.1. Introduction ......................................... 65
    13.2. STM Operations in Liquids ............................ 66
          13.2.1. Instruments .................................. 66
          13.2.2. Preparation of Substrates .................... 67
    13.3. Surface Structures of Substrates ..................... 68
          13.3.1. Introduction ................................. 68
          13.3.2. Structures of Au(111) ........................ 68
          13.3.3. Structures of Au( 100) ....................... 68
    13.4. SA of Organic Molecules .............................. 69
          13.4.1. Introduction ................................. 69
          13.4.2. Assembly of Chemisorbed Molecules:
                  Alkanethiols ................................. 70
          13.4.3. Assembly of Physisorbed Molecules:
                  n-Alkanes .................................... 80
    13.5. SA of Inorganic Complexes ............................ 84
          13.5.1. Introduction ................................. 84
          13.5.2. Assembly of Metal Complexes .................. 85
          13.5.3. Assembly of Metal Oxide Clusters:
                  Polyoxometalates ............................. 92
    13.6. Conclusions .......................................... 96
    References ................................................. 96

14. Single-Molecule Studies on Ceils and Membranes
    Using the Atomic Force Microscope
       Ferry Kienberger, Lilifl A. Chtcheglova, Andreas
       Ebner, Theeraporn Puntheeranurak, Hermann J. Gruber,
       Peter Hinterdorfer ..................................... 101
    
    14.1. Abstract ............................................ 101
    14.2. Introduction ........................................ 102
    14.3. Principles of Atomic Force Microscopy ............... 103
    14.4. Imaging of Membrane-Protein Complexes ............... 104
          14.4.1. Membranes of Photosynthetic Bacteria and
                  Bacterial S-Layers .......................... 104
          14.4.2. Nuclear Pore Complexes ...................... 106
          14.4.3. Cell Membranes with Attached Viral
                  Particles ................................... 106
    14.5. Single-Molecule Recognition on Cells and
          Membranes ........................................... 110
          14.5.1. Principles of Recognition Force
                  Measurements ................................ 110
          14.5.2. Force-Spectroscopy Measurements on Living
                  Cells ....................................... 113
    14.6. Unfolding and Refolding of Single-Membrane
          Proteins ............................................ 117
    14.7. Simultaneous Topography and Recognition Imaging
          on Cells (TREC) ..................................... 119
    14.8. Concluding Remarks .................................. 122
    References ................................................ 123

15. Atomic Force Microscopy of DNA Structure and
    Interactions
       Neil H. Thomson ........................................ 127

    15.1. Introduction: The Single-Molecule, Bottom-Up
          Approach ............................................ 127
    15.2. DNA Structure and Function .......................... 129
    15.3. The Atomic Force Microscope ......................... 131
    15.4. Binding of DNA to Support Surfaces .................. 137
          15.4.1. Properties of Support Surfaces for
                  Biological AFM .............................. 137
          15.4.2. DNA Binding to Surfaces ..................... 138
          15.4.3. DNA Transport to Surfaces ................... 142
    15.5. AFM of DNA Systems .................................. 143
          15.5.1. Static Imaging versus Dynamic Studies ....... 143
          15.5.2. The Race for Reproducible Imaging of
                  Static DNA .................................. 144
          15.5.3. Applications of Tapping-Mode AFM to
                  DNA Systems ................................. 146
    15.6. Outlook ............................................. 157
    References ................................................ 159

16. Direct Detection of Ligand-Protein Interaction
    Using AFM
       Malgorzata Lekka, Piotr Laidler, Andrzej J. Kulik ...... 165

    16.1. Cell Structures and Functions ....................... 166
          16.1.1. Membranes and their Components: Lipids
                  and Proteins ................................ 166
          16.1.2. Glycoproteins ............................... 167
          16.1.3. Immunoglobulins ............................. 169
          16.1.4. Adhesion Molecules .......................... 170
          16.1.5. Plant Lectins ............................... 173
    16.2. Forces Acting Between Molecules ..................... 175
          16.2.1. Repulsive Forces ............................ 177
          16.2.2. Attractive Forces ........................... 179
    16.3. Force Spectroscopy .................................. 181
          16.3.1. Atomic Force Microscope ..................... 182
          16.3.2. Force Curves Calibration .................... 187
          16.3.3. Determination of the Unbinding Force ........ 188
          16.3.4. Data Analysis ............................... 189
    16.4. Detection of the Specific Interactions on
          Cell Surface ........................................ 193
          16.4.1. Isolated Proteins ........................... 194
          16.4.2. Receptors in Plasma Membrane of
                  Living Cells ................................ 196
    16.5. Summary ............................................. 201
    References ................................................ 202

17. Dynamic Force Microscopy for Molecular-Scale
    Investigations of Organic Materials in
    Various Environments
       Hirofiimi Yamada, Kei Kobayashi ........................ 205

    17.1. Brief Overview ...................................... 205
    17.2. Principles and Instrumentation of Frequency
          Modulation Detection Mode Dynamic Force
          Microscopy .......................................... 206
          17.2.1. Transfer Function of the Cantilever as
                  a Force Sensor .............................. 206
          17.2.2. Detection Methods of Resonance Frequency
                  Shift of the Cantilever ..................... 208
          17.2.3. Instrumentation of the Frequency
                  Modulation Detection Mode ................... 210
          17.2.4. Frequency Modulation Detector ............... 212
          17.2.5. Phase-Locked-Loop Frequency Modulation
                  Detector .................................... 212
          17.2.6. Relationship Between Frequency Shift and
                  Interaction Force ........................... 214
          17.2.7. Inversion of Measured Frequency Shift to
                  Interaction Force ........................... 216
    17.3. Noise in Frequency Modulation Atomic Force
          Microscopy .......................................... 217
          17.3.1. Thermal Noise Drive ......................... 217
          17.3.2. Minimum Detectable Force in Static Mode ..... 218
          17.3.3. Minimum Detectable Force Using the
                  Amplitude Modulation Detection Method ....... 218
          17.3.4. Minimum Detectable Force Using the
                  Frequency Modulation Detection Method ....... 219
          17.3.5. Effect of Displacement-Sensing Noise
                  on Minimum Detectable Force ................. 220
          17.3.6. Comparison of Minimum Detectable Force
                  for Static Mode and Dynamic Modes ........... 223
    17.4. High-Resolution Imaging of Organic Molecules
          in Various Environments ............................. 225
          17.4.1. Alkanethiol Self-Assembled Monolayers ....... 225
          17.4.2. Submolecular-Scale Contrast in Copper
                  Phthalocyanines ............................. 228
          17.4.3. Atomic Force Microscopy Imaging
                  in Liquids .................................. 230
    17.5. Investigations of Molecular Properties .............. 233
          17.5.1. Surface Potential Measurements .............. 233
          17.5.2. Energy Dissipation Measurements ............. 241
    17.6. Summary and Outlook ................................. 243
    References ................................................ 244

18. Noncontact Atomic Force Microscopy
       Yasuhiro Sugawara ...................................... 247

    18.1. Introduction ........................................ 247
    18.2. NC-AFM System the Using FM Detection Method ......... 247
    18.3. Identification of Subsurface Atom Species ........... 249
    18.4. Tip-Induced Structural Change on a Si(001)
          Surface at 5 К ...................................... 251
    18.5. Influence of Surface Stress on Phase Change
          in the Si(001) Step at 5 К .......................... 252
    18.6. Origin of Anomalous Dissipation Contrast on
          a Si(001) Surface at 5 К ............................ 253
    18.7. Summary ............................................. 254
    References ................................................ 255

19. Tip-Enhanced Spectroscopy for Nano Investigation
    of Molecular Vibrations
       Norihiko Hayazawa, Yuika Saito ......................... 257

    19.1. Introduction ........................................ 257
    19.2. TERS (Reflection and Transmission Modes) ............ 258
          19.2.1. Experimental Configuration of TERS .......... 258
          19.2.2. Transmission Mode ........................... 259
          19.2.3. Reflection Mode ............................. 260
    19.3. How to Fabricate the Tips? .......................... 261
          19.3.1. Vacuum Evaporation and Sputtering
                  Technique ................................... 261
          19.3.2. Electroless Plating ......................... 261
          19.3.3. Etching of Metal Wires Followed by
                  Focused Ion Beam Milling .................... 262
          19.3.4. Other Methods ............................... 263
    19.4. Tip-Enhanced Raman Imaging .......................... 263
          19.4.1. Selective Detection of Different Organic
                  Molecules ................................... 264
          19.4.2. Observation of Single-Walled
                  Carbon Nanotubes ............................ 265
    19.5. Polarization-Controlled TERS ........................ 268
          19.5.1. Polarization Measurement by Using a
                  High NA Objective Lens ...................... 268
          19.5.2. Metallized Tips and Polarizations ........... 269
          19.5.3. Example of p- and s-Polarization
                  Measurements in TERS ........................ 271
    19.6. Reflection Mode for Opaque Samples .................. 272
          19.6.1. TERS Spectra of Strained Silicon ............ 272
          19.6.2. Nanoscale Characterization of
                  Strained Silicon ............................ 274
    19.7. For Higher Spatial Resolution ....................... 275
          19.7.1. Tip-Pressurized Effect ...................... 275
          19.7.2. Nonlinear Effect ............................ 278
    19.8. Conclusion .......................................... 282
    References ................................................ 283

20. Investigating Individual Carbon Nanotube/Polymer
    Interfaces with Scanning Probe Microscopy
       Asa H. Barber, H. Daniel Wagner, Sidney R. Cohen ....... 287

    20.1. Mechanical Properties of Carbon-Nanotube
          Composites .......................................... 288
          20.1.1. Introduction ................................ 288
          20.1.2. Mechanical Properties of Carbon
                  Nanotubes ................................... 288
          20.1.3. Carbon-Nanotube Composites .................. 290
    20.2. Interfacial Adhesion Testing ........................ 292
          20.2.1. Historical Background ....................... 292
          20.2.2. Shear-Lag Theory ............................ 293
          20.2.3. Kelly-Tyson Approach ........................ 294
          20.2.4. Single-Fiber Tests .......................... 294
    20.3. Single Nanotube Experiments ......................... 296
          20.3.1. Rationale and Motivation .................... 296
          20.3.2. Drag-out Testing (Ex Situ Technique) ........ 297
          20.3.3. Pull-out Testing (In Situ) .................. 298
          20.3.4. Comparison of In Situ and Ex Situ
                  Experiments ................................. 304
          20.3.5. Wetting Experiments ......................... 306
    20.4. Implication of Results and Comparison with
          Theory .............................................. 311
          20.4.1. Interfaces in Engineering Composites ........ 311
          20.4.2. Simulation of Carbon-Nanotube/Polymer
                  Interfacial Adhesion Mechanisms ............. 312
          20.4.3. Discussion of Potential Bonding
                  Mechanisms at the Interface ................. 314
    20.5. Complementary Techniques ............................ 314
          20.5.1. Raman Spectroscopy .......................... 314
          20.5.2. Scanning Electron Microscopy ................ 316
          20.5.3. Overall Conclusions ......................... 320
    References ................................................ 320

Subject Index ................................................. 325


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:20:34 2019. Размер: 21,227 bytes.
Посещение N 1561 c 03.11.2009