Band Y.B. Light and matter (Chichester, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBand Y.B. Light and matter. - Repr. of ed. 2006. - Chichester: John Wiley, 2007. - xv, 640 p.: ill., ports. - Ref.: p.615-617. - Bibliogr.: p.619-622. - Ind.: p.623-640. - ISBN 0-471-89931-3
 

Оглавление / Contents
 
Preface ...................................................... xiii

1. Electromagnetic radiation .................................... 1
   1.1. Brief history of the interaction of light and matter .... 3
   1.2. Light in vacuum ......................................... 3
        1.2.1. The electromagnetic spectrum ..................... 6
        1.2.2. Wave equation in vacuum ......................... 26
        1.2.3. Propagation of one component in one dimension ... 30
        1.2.4. Phase and group velocity of a light pulse ....... 34
        1.2.5. Amplitude modulation ............................ 38
        1.2.6. Frequency and phase modulation .................. 38
        1.2.7. Energy, momentum and angular momentum of
               electromagnetic waves ........................... 41
        1.2.8. Polarized light ................................. 50
        1.2.9. Diffraction ..................................... 60
        1.2.10.Interference .................................... 66
        1.2.11.Temporal and spatial coherence .................. 72
        1.2.12.Photons: quantization of the electromagnetic
               field ........................................... 75
   1.3. Matter-source of light ................................. 79
        1.3.1. Classical expressions for the charge density
               and current ..................................... 79
        1.3.2. The wave equation with source terms: Lienard-
               Wiechert potentials ............................. 80
2. Phenomenology of light propagation in matter ................ 87
   2.1. Absorption of light .................................... 88
        2.1.1. Color of materials .............................. 91
        2.1.2. An aside on Einstein absorption and emission
               coefficients .................................... 93
   2.2. Nonlinear absorption ................................... 94
        2.2.1. Saturable absorption ............................ 95
        2.2.2. Reverse saturable absorption .................... 97
        2.2.3. Two-photon absorption ........................... 99
   2.3. Index of refraction ................................... 100
        2.3.1. Reflection and refraction at a boundary
               interface ...................................... 101
        2.3.2. Relationship between refractive index and
               absorption: Kramers - Kronig relation .......... 105
        2.3.3. Dispersion ..................................... 107
        2.3.4. Refractive index temperature dependence:
               thermal lensing ................................ 112
   2.4. Optical phenomena in nonisotropic media ............... 113
        2.4.1. Introduction to crystallography and optics in
               crystals ....................................... 113
        2.4.2. Dichroism ...................................... 122
        2.4.3. Birefringence .................................. 122
        2.4.4. Optical activity, optical rotatory dispersion
               and circular dichroism ......................... 140
   2.5. Electric field effects ................................ 143
        2.5.1. Kerr effect .................................... 143
        2.5.2. Pockels effect ................................. 144
        2.5.3. Piezoelectricity ............................... 149
        2.5.4. Pyroelectric effect ............................ 151
        2.5.5. Ferroelectric effect ........................... 152
        2.5.6. Electrostriction ............................... 158
        2.5.7. Photorefractive effect ......................... 161
   2.6. Acousto-optic effects ................................. 163
        2.6.1. Diffraction by acoustic waves: Brillouin
               scattering ..................................... 163
        2.6.2. Photoelastic effect (stress-birefringence) ..... 168
        2.6.3. Acousto-optic detection of light ............... 169
   2.7. Magnetic field effects ................................ 171
        2.7.1. Faraday effect ................................. 173
        2.7.2. Voigt and Cotton -Mouton effects ............... 175
        2.7.3. Magnetic circular birefringence and dichroism .. 176
        2.7.4. Magnetostriction and magnetoelasticity ......... 176
3. The interaction of light and matter ........................ 177
   3.1. Lorentz force law ..................................... 178
   3.2. Motion of a charged particle in static electric and
        magnetic fields ....................................... 178
        3.2.1. Motion in a magnetic field - the cyclotron
               frequency ...................................... 178
        3.2.2. Crossed electric and magnetic fields ........... 179
        3.2.3. Conductivity, magnetoconductivity and Hall
               effect ......................................... 180
   3.3. Motion of a bound electron in an electromagnetic
        field ................................................. 184
        3.3.1. Linewidth due to spontaneous emission .......... 184
        3.3.2. Rayleigh scattering, Thomson scattering,
               and resonant line scattering limits ............ 186
        3.3.3. Polarization of a medium ....................... 193
        3.3.4. Polarization of a medium in a static magnetic
               field .......................................... 202
        3.3.5. Electromagnetic field and a static electric
               field .......................................... 206
        3.3.6. Nonlinear polarization of a medium ............. 207
   3.4. Radiation due to acceleration of charges .............. 210
        3.4.1. Radiation from relativistically moving
               charges ........................................ 211
        3.4.2. Synchrotron emission ........................... 214
        3.4.3. Radiative damping force revisited .............. 215
        3.4.4. Cherenkov radiation ............................ 217
   3.5. Multipole radiation ................................... 217
        3.5.1. Scattering of long wavelength electromagnetic
               radiation from small particles ................. 221
   3.6. Scattering of a light wavepacket ...................... 224
   3.7. Cooling and trapping of atoms ......................... 225
        3.7.1. Far off-resonance trapping, atom mirrors and
               optical tweezers ............................... 226
        3.7.2. Doppler cooling ................................ 228
        3.7.3. Polarization gradient cooling (Sisyphus
               cooling) of atoms .............................. 230
4. Magnetic phenomena, constitutive relations and plasmas ..... 235
   4.1. Magnetic moments ...................................... 237
   4.2. Magnetization ......................................... 242
        4.2.1. Diamagnetism ................................... 243
        4.2.2. Paramagnetism .................................. 244
        4.2.3. Ferromagnetism ................................. 247
        4.2.4. Ferrimagnetism ................................. 250
        4.2.5. Antiferromagnetism ............................. 251
        4.2.6. Permeability resonances ........................ 251
   4.3. Magnetic resonance .................................... 252
        4.3.1. Nuclear magnetic resonance ..................... 256
   4.4. Polarization and magnetization as source terms ........ 259
   4.5. Atomistic derivation of macroscopic electromagnetism
        and the constitutive relations ........................ 261
   4.6. Microscopic polarizability and macroscopic
        polarization .......................................... 264
        4.6.1. Clausius-Mossotti equation and the Lorentz-
               Lorenz correction factor ....................... 265
        4.6.2. Microscopic magnetic moment and macroscopic
               magnetization .................................. 267
   4.7. Dielectric relaxation ................................. 267
        4.7.1. Molecular orientation (and re-orientation)
               in an applied field ............................ 270
        4.7.2. Dispersion relations for light in dielectric
               crystals ....................................... 272
   4.8. Plasmas ............................................... 275
        4.8.1. Plasma parameters .............................. 277
        4.8.2. Constitutive equations in a plasma ............. 280
        4.8.3. Kinetic theory ................................. 282
        4.8.4. Hydrodynamic model of plasmas .................. 284
        4.8.5. Waves in a plasma .............................. 289
5. Quantum description of absorption, emission and light
   scattering ................................................. 293
   5.1. Charged particle in an electromagnetic field .......... 294
        5.1.1. Electron spin coupling ......................... 297
        5.1.2. Landau levels in a static magnetic field ....... 300
   5.2. Absorption and emission ............................... 301
        5.2.1. Time-dependent perturbation theory ............. 301
        5.2.2. Spontaneous emission ........................... 304
        5.2.3. Stimulated emission and absorption ............. 309
        5.2.4. Finite lifetime considerations for stimulated
               emission and absorption ........................ 309
        5.2.5. Finite duration pulses ......................... 311
   5.3. Rayleigh and Raman scattering ......................... 312
        5.3.1. Why is the sky blue, the setting sun red and
               clouds white? .................................. 316
   5.4. Thomson scattering .................................... 317
6. Spectroscopy ............................................... 319
   6.1. Atoms ................................................. 320
        6.1.1. The hydrogen atom .............................. 327
        6.1.2. Multielectron atomic systems ................... 337
        6.1.3. Atomic selection rules ......................... 347
        6.1.4. Broadening due to lifetime and collisions ...... 348
   6.2. Molecules ............................................. 348
        6.2.1. Hamiltonian for molecular systems .............. 348
        6.2.2. The Born - Oppenheimer approximation and
               potential energy surfaces ...................... 349
        6.2.3. Molecular orbitals ............................. 350
   6.3. Diatomic molecules .................................... 353
        6.3.1. Diatomic rotational and vibrational states
               and transitions ................................ 354
        6.3.2. Electric dipole transitions .................... 360
        6.3.3. The Franck-Condon principle .................... 361
        6.3.4. More about rotational states and transitions:
               microwave spectroscopy ......................... 363
        6.3.5. H2+ ion ........................................ 364
        6.3.6. H2 molecule .................................... 366
   6.4. Polyatomic molecules .................................. 367
        6.4.1. Multidimensional Born-Oppenheimer potential
               surfaces ....................................... 367
        6.4.2. The nuclear Hamiltonian for molecular systems .. 369
        6.4.3. Rotational degrees of freedom .................. 370
        6.4.4. Large molecules ................................ 377
   6.5. Condensed-phase materials ............................. 381
        6.5.1. Crystals doped with metal ions ................. 381
        6.5.2. Metals ......................................... 392
        6.5.3. Semiconductor materials ........................ 397
7. Lasers ..................................................... 409
   7.1. Laser dynamics ........................................ 410
        7.1.1. Three- and four-level lasers ................... 410
        7.1.2. Laser rate equations ........................... 412
   7.2. Threshold ............................................. 414
   7.3. Steady state .......................................... 416
        7.3.1. Small signal gain and gain saturation .......... 417
        7.3.2. Circulating intracavity intensity .............. 417
        7.3.3. cw output vs input ............................. 419
   7.4. Pulsed laser operation ................................ 420
        7.4.1. Relaxation oscillations ........................ 420
        7.4.2. Q-switching .................................... 422
        7.4.3. Mode-locking ................................... 426
        7.4.4. Extra-cavity pulse compressor .................. 429
        7.4.5. Chirped pulse amplifiers ....................... 429
   7.5. Cavity modes .......................................... 430
        7.5.1. Longitudinal modes ............................. 430
        7.5.2. Transverse modes ............................... 432
   7.6. Amplified spontaneous emission ........................ 435
   7.7. Laser linewidth ....................................... 437
   7.8. Laser coherence ....................................... 437
   7.9. Specific laser systems ................................ 437
        7.9.1. He-Ne laser .................................... 438
        7.9.2. Ar ion and Krion lasers ........................ 439
        7.9.3. CO2 laser ...................................... 441
        7.9.4. Nitrogen laser ................................. 443
        7.9.5. Excimer and exciplex lasers .................... 444
        7.9.6. Dye lasers ..................................... 444
        7.9.7. Solid-state lasers ............................. 445
        7.9.8. Semiconductor diode lasers: GaAs, AlGaAs
               heterostructures ............................... 451
8. Nonlinear optics ........................................... 455
   8.1. Expansion of the polarization in the electric field ... 456
        8.1.1. Symmetry relations of the nonlinear
               susceptibilities ............................... 460
        8.1.2. Electromagnetic energy density in a nonlinear
               medium ......................................... 462
        8.1.3. Local field corrections to nonlinear
               susceptibilities ............................... 464
        8.1.4. The nonlinear wave equation for the slowly
               varying envelope ............................... 465
        8.1.5. Manley-Rowe relations .......................... 469
   8.2. Phase-matching ........................................ 470
        8.2.1. Collinear phase-matching ....................... 471
        8.2.2. Noncollinear phase-matching .................... 472
   8.3. Second harmonic generation ............................ 473
        8.3.1. Second harmonic generation with multimode
               light .......................................... 473
        8.3.2. Short-pulse second harmonic generation ......... 476
   8.4. Three-wave mixing ..................................... 478
        8.4.1. Sum frequency generation ....................... 478
        8.4.2. Difference frequency generation ................ 484
   8.5. Third harmonic generation ............................. 485
        8.5.1. Third harmonic generation in rare gas
               mixtures ....................................... 487
        8.5.2. Effects of self-phase modulation on third
               harmonic generation ............................ 487
   8.6. Self-focusing and self-phase modulation ............... 488
        8.6.1. The nonlinear Schrodinger equation ............. 490
        8.6.2. Optical solitons ............................... 492
   8.7. Four-wave mixing ...................................... 495
   8.8. Stimulated Raman processes ............................ 496
        8.8.1. Coherent anti-Stokes and Stokes Raman
               spectroscopy ................................... 498
   8.9. Stimulated Bnllouin processes ......................... 498
   8.10.Nonlinear matter-wave optics .......................... 501
9. Quantum-optical processes .................................. 503
   9.1. Interaction of a two-level system with an
        electromagnetic field ................................. 504
        9.1.1. Rotating wave approximation .................... 505
        9.1.2. Rabi oscillations .............................. 506
        9.1.3. Dressed states ................................. 508
        9.1.4. Adiabatic passage and the adiabatic theorem .... 512
   9.2. Liouville-von Neumann equation for the density
        matrix ................................................ 514
        9.2.1. The density matrix description of matter ....... 515
        9.2.2. The steady-state density matrix solution ....... 524
        9.2.3. Rate equation limit ............................ 526
        9.2.4. Atom cooling and trapping revisited ............ 527
        9.2.5. The adiabatic theorem for density matrix
               dynamics ....................................... 528
        9.2.6. Inhomogeneous broadening ....................... 529
        9.2.7. Optical coherent transient processes ........... 530
   9.3. Three-level system .................................... 536
        9.3.1. Wavefunction treatment of a three-level
               system ......................................... 537
        9.3.2. Population transfer using stimulated Raman
               adiabatic passage .............................. 539
        9.3.3. Coherent trapping dark states .................. 541
        9.3.4. Density matrix treatment of a three-level
               system ......................................... 541
   9.4. Coherent states and squeezed states ................... 543
        9.4.1. Position-momentum squeezing .................... 547
        9.4.2. Number and phase squeezing and the phase
               operator ....................................... 549
        9.4.3. Generation of squeezed states: parametric
               down-conversion ................................ 551
        9.4.4. Homodyne detection of squeezed states .......... 552
        9.4.5. Application of squeezed states: sub-shot-
               noise phase measurements ....................... 553
   9.5. The Jaynes-Cummings model ............................. 554
   9.6. Interaction between modes of a quantum field .......... 556
        9.6.1. Interaction representation ..................... 557
        9.6.2. Quantum-field two-mode Rabi problem ............ 558
        9.6.3. Parametric oscillation ......................... 559
10.Light propagation in optical fibers and introduction to
   optical communication systems .............................. 561
   10.1.Fiber characteristics ................................. 562
        10.1.1.Attenuation in fibers .......................... 564
        10.1.2.Dispersion in fibers ........................... 564
        10.1.3.Polarization- maintenance and single-
               polarization fibers ............................ 566
        10.1.4.Gain in doped fibers ........................... 566
   10.2. Transverse modes of an optical fiber ................. 567
        10.2.1.Single-mode fiber .............................. 571
        10.2.2.Imperfections in the fiber ..................... 572
        10.2.3.Coupling between fiber modes ................... 572
        10.2.4.Fiber-Bragg gratings ........................... 572
   10.3. Nonlinear processes in fibers ........................ 573
        10.3.1.Optical solitons in fibers ..................... 574
        10.3.2.Stimulated Raman amplification in fibers ....... 574
        10.3.3.Higher-order nonlinear effects ................. 575
        10.3.4.Parametric processes ........................... 576
   10.4. Fiber-optic communication systems .................... 576
        10.4.1.Analogue communication ......................... 577
        10.4.2.Coherent optical communication ................. 577
        10.4.3.Digital communication .......................... 579
        10.4.4.Multiplexing techniques ........................ 581

Appendices .................................................... 583

Appendix A: vector analysis ................................... 583
   A.1. Scalar and vector products ............................ 583
   A.2. Differential operators ................................ 583
   A.3. Divergence and Stokes theorems ........................ 585
   A.4. Curvilinear coordinates ............................... 586

Appendix B: Electromagnetism and Maxwell's equations .......... 588
   B.l. The laws of electromagnetism .......................... 588
   B.2. Electromagnetic units ................................. 589
   B.3. Maxwell's equations ................................... 590

Appendix C: Quantum mechanics and the Schrodinger equation .... 595
   C.l. Time-dependent and time-independent Schrodinger
        equations ............................................. 595
   C.2. Spherical harmonics ................................... 597
   C.3. The radial Schrodinger equation ....................... 598
   C.4. The free particle ..................................... 600
   С 5. The spherical top and the distorted spherical top ..... 601
   С 6. The Coulomb potential ................................. 602
   C.7. Atomic units .......................................... 603
   C.8. The Morse potential ................................... 606
   C.9. The harmonic oscillator potential ..................... 607

Appendix D: perturbation theory ............................... 609
   D.1. Nondegenerate time-independent perturbation theory .... 609
   D.2. Degenerate time-independent perturbation theory ....... 611
   D.3. Time-dependent perturbation theory .................... 612

Appendix E: Fundamental constants ............................. 613

References .................................................... 615

Bibliography .................................................. 619

Index ......................................................... 623


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:20:12 2019. Размер: 26,196 bytes.
Посещение N 1661 c 01.09.2009