Nanophotonic materials (Weinheim, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNanophotonic materials: photonic crystals, plasmonics, and metamaterials / ed. by Wehrspohn R.B. - Weinheim: Wiley-VCH, 2008. - xxvii, 418 p.: ill. (some col.). - Ind.: p.417-418. - ISBN 978-3-527-40858-0
 

Оглавление / Contents
 
Preface ........................................................ XV
List of Contributors ......................................... XVII

I. Linear and Non-linear Properties of Photonic Crystals ........ 1

1. Solitary Wave Formation in One-dimensional Photonic
   Crystals ..................................................... 3
      Sabine Essig, Jens Niegemann, Lasha Tkeshelashvili, and 
      Kurt Busch
   1.1. Introduction ............................................ 3
   1.2. Variational Approach to the NLCME ....................... 5
   1.3. Radiation Losses ........................................ 9
   1.4. Results ................................................ 11
   1.5. Conclusions and Outlook ................................ 12
   References .................................................. 13
2. Microscopic Analysis of the Optical and Electronic
   Properties of Semiconductor Photonic-Crystal Structures ..... 15
      Bemhard Pasenow, Matthias Reichelt, Tineke Stroucken,
      Torsten Meier, and Stephan W. Koch
   2.1. I ntroduction .......................................... 15
   2.2. Theoretical Approach ................................... 16
        2.2.1. Spatially-Inhomogeneous Maxwell Equations
               in Semiconductor Photonic-Crystal Structures .... 17
               2.2.1.1. Transverse Part: Self-Consistent
                        Solution of the Maxwell Semiconductor
                        Bloch Equations ........................ 18
               2.2.1.2. Longitudinal Part: The Generalized
                        Coulomb Interaction .................... 18
        2.2.2. Hamiltonian Describing the Material Dynamics .... 19
        2.2.3. Semiconductor Bloch Equations in Real Space ..... 21
               2.2.3.1. Low-Intensity Limit .................... 22
   2.3. Numerical Results ...................................... 24
        2.3.1. Semiconductor Photonic-Crystal Structure ........ 24
        2.3.2. Linear Excitonic Absorption ..................... 26
        2.3.3. Coherent Wave Packet Dynamics ................... 29
        2.3.4. Wave Packet Dynamics with Dephasing and
               Relaxation ...................................... 31
        2.3.5. Quasi-Equilibrium Absorption and Gain Spectra ... 33
   2.4. Summary ................................................ 35
   References .................................................. 36
3. Functional 3D Photonic Films from Polymer Beads ............. 39
      Birger Lange, Friederike Fleischhaker, and Rudolf
      Zentel
   3.1. I ntroduction .......................................... 39
   3.2. Opals as Coloring Agents ............................... 43
        3.2.1. Opal Flakes as Effect Pigments in Clear
               Coatings ........................................ 44
        3.2.2. Opaline Effect Pigments by Spray Induced
               Self-Assembly ................................... 44
   3.3. Loading of Opals with Highly Fluorescent Dyes .......... 46
   3.4. New Properties Through Replication ..................... 47
        3.4.1. Increase of Refractive Index .................... 47
        3.4.2. Robust Replica .................................. 48
        3.4.3. Inert Replica for Chemistry and Catalysis
               at High Temperatures ............................ 49
   3.5. Defect Incorporation into Opals ........................ 50
        3.5.1. Patterning of the Opal Itself ................... 51
        3.5.2. Patterning of an Infiltrated Material ........... 53
        3.5.3. Chemistry in Defect Layers ...................... 55
               References ...................................... 58
4. Bloch Modes and Group Velocity Delay in Coupled
   Resonator Chains ............................................ 63
      Bjbrn M. Möller, Mikhail V. Artemyev, and Ulrike
      Woggon
   4.1. Introduction ........................................... 63
   4.2. Experiment ............................................. 64
   4.3. Coherent Cavity Field Coupling in One-Dimensional
        CROWs .................................................. 65
   4.4. Mode Structure in Finite CROWs ......................... 67
   4.5. Slowing Down Light in CROWs ............................ 70
   4.6. Disorder and Detuning in CROWs ......................... 72
   4.7. Summary ................................................ 74
   References .................................................. 74
5. Coupled Nanopillar Waveguides: Optical Properties and
   Applications ................................................ 77
      Dmitry N. Chigrin, Sergei V. Zhukovsky, Andrei V.
      Lavrinenko, and Johann Kroha
   5.1. Introduction ........................................... 77
   5.2. Dispersion Engineering ................................. 79
        5.2.1. Dispersion Tuning ............................... 79
        5.2.2. Coupled Mode Model .............................. 82
   5.3. Transmission Efficiency ................................ 85
   5.4. Aperiodic Nanopillar Waveguides ........................ 88
   5.5. Applications ........................................... 89
        5.5.1. Directional Coupler ............................. 89
        5.5.2. Laser Resonators ................................ 90
   5.6. Conclusion ............................................. 94
   References .................................................. 95
6. Investigations on the Generation of Photonic Crystals
   using Two-Photon Polymerization (2PP) of Inorganic-
   Organic Hybrid Polymers with Ultra-Short Laser Pulses ....... 97
      R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov,
      J. Serbin, and B.N. Chichkov
   6.1. Introduction ........................................... 97
   6.2. High-Refractive Index Inorganic-Organic Hybrid
        Polymers ............................................... 98
   6.3. Multi-Photon Fabrication .............................. 104
        6.3.1. Experimental Setup ............................. 204
        6.3.2. Fabrication of PhC in Standard ORMOCER® ........ 105
        6.3.3. 2PP of High Refractive Index Materials ......... 107
        6.3.4. Patterning and PhC Fabrication in Positive
               Resist Material S1813 .......................... 111
   6.4. Summary and Outlook ................................... 112
   References ................................................. 113
7. Ultra-low Refractive Index Mesoporous Substrates for
   Wavegu ide Structu res ..................................... 115
      D. Konjhodzic, S. Schröter, and F. Marlow
   7.1. Introduction .......................................... 115
   7.2. Mesoporous Films ...................................... 116
        7.2.1. Fabrication of Mesoporous Silica Films ......... 116
               7.2.1.1. General Remarks ....................... 116
               7.2.1.2. Preparation Details ................... 117
        7.2.2. Characterization and Structure Determination
               of MSFs ........................................ 118
        7.2.3. Optical Properties of MSFs ..................... 121
        7.2.4. Synthesis Mechanism ............................ 123
   7.3. MSFs as Substrates for Waveguide Structures ........... 124
        7.3.1. Polymer Waveguides ............................. 124
        7.3.2. Ta2O5 Waveguides and 2D PhC Structures ......... 126
        7.3.3. PZT Films ...................................... 127
   7.4. Conclusions ........................................... 129
   References ................................................. 130
8. Linear and Nonlinear Effects of Light Propagation in
   Low-index Photonic Crystal Slabs ........................... 131
      R. Iliew, C. Etrich, M. Augustin, E.-B. Kley, S.
      Nolte, A. Tünnermann, and F. Lederer
   8.1. Introduction .......................................... 131
   8.2. Fabrication of Photonic Crystal Slabs ................. 132
   8.3. Linear Properties of Photonic Crystal Slabs ........... 133
        8.3.1. Transmission and High Dispersion of Line-
               Defect Waveguides .............................. 134
        8.3.2. High-Quality Factor Microcavities in a Low-
               Index Photonic Crystal Membrane ................ 138
        8.3.3. Unusual Diffraction and Refraction Phenomena
               in Photonic Crystal Slabs ...................... 141
               8.3.3.1. Self-Collimated Light at Infrared
                        and Visible Wavelengths ............... 142
               8.3.3.2. Negative Refraction of Light .......... 143
   8.4. Light Propagation in Nonlinear Photonic Crystals ...... 145
        8.4.1. An Optical Parametric Oscillator in
               a Photonic Crystal Microcavity ................. 145
        8.4.2. Discrete Solitons in Coupled Defects in
               Photonic Crystals .............................. 147
   8.5. Conclusion ............................................ 152
   References ................................................. 152
9. Linear and Non-linear Optical Experiments Based on
   Macroporous Silicon Photonic Crystals ...................... 157
      Ralf B. Wehrspohn, Stefan L Schweizer, and Vahid
      Sandoghdar
   9.1. Introduction .......................................... 157
   9.2. Fabrication of 2D Photonic Crystals ................... 158
        9.2.1. Macroporous Silicon Growth Model ............... 158
        9.2.2. Extension of the Pore Formation Modelto
               Trench Formation ............................... 162
        9.2.3. Fabrication of Trenches and More Complex
               Geometries ..................................... 162
        9.2.4. Current Limits of Silicon Macropore Etching .... 164
   9.3. Defects in 2D Macroporous Silicon Photonic Crystals ... 264
        9.3.1. Waveguides ..................................... 165
        9.3.2. Beaming ........................................ 166
        9.3.3. Microcavities .................................. 168
   9.4. Internal Emitter ...................................... 170
        9.4.1. Internal Emitter in Bulk 2D Silicon Photonic
               Crystals ....................................... 170
        9.4.2. Internal Emitter in Microcavities of 2D
               Silicon Photonic Crystals ...................... 172
        9.4.3. Modified Thermal Emission ...................... 174
   9.5. Tunability of Silicon Photonic Crystals ............... 175
        9.5.1. Liquid Crystals Tuning ......................... 175
        9.5.2. Free-carrier Tuning ............................ 176
        9.5.3. Nonlinear Optical Tuning ....................... 177
   9.6. Summary ............................................... 179
   References ................................................. 180
10.Dispersive Properties of Photonic Crystal Waveguide
   Resonators ................................................. 183
      T. Sunner, M. Cellner, M. Scholz, A. Löffler, M. Kamp,
      and A. Forchel
   10.1.Introduction .......................................... 183
   10.2.Design and Fabrication ................................ 184
        10.2.1.Resonator Design ............................... 184
        10.2.2.Fabrication .................................... 186
   10.3.Transmission Measurements ............................. 187
   10.4.Dispersion Measurements ............................... 189
   10.5.Analysis .............................................. 192
        10.5.1.Hubert Transformation .......................... 192
        10.5.2.Fabry-Perot Model .............................. 194
   10.6.Postfabrication Tuning ................................ 195
   10.7.Conclusion ............................................ 196
   References ................................................. 197

II.Tuneable Photonic Crystals ................................. 199

11.Polymer Based Tuneable Photonic Crystals ................... 202
      J.H. Wülbern, M. Schmidt, U. Hübner, R. Boucher,
      W. Volksen, Y. Lu, R. Zentel, and M. Eich
   11.1.Introduction .......................................... 202
   11.2.Preparation of Photonic Crystal Structures in
        Polymer Waveguide Material ............................ 202
        11.2.1.Materials ...................................... 202
        11.2.2.Fabrication .................................... 203
   11.3.Realization and Characterization of Electro-
        Optically Tuneable Photonic Crystals .................. 208
        11.3.1.Characterization ............................... 208
        11.3.2.Experimental Results ........................... 220
   11.4.Synthesis of Electro-Optically Active Polymers ........ 223
   11.5.Conclusions and Outlook ............................... 227
   References ................................................. 228
12.Tuneable Photonic Crystals obtained by Liquid Crystal
   Infiltration ............................................... 222
      H.-S. Kitzerow, A. Lorenz, and H. Matthias
   12.1.Introduction .......................................... 222
   12.2.Experimental Results .................................. 223
        12.2.1.Colloidal Crystals ............................. 223
        12.2.2.Photonic Crystals Made of Macroporous
               Silicon ........................................ 226
        12.2.3.Photonic Crystal Fibres ........................ 231
   12.3.Discussion ............................................ 232
   12.4.Conclusions ........................................... 233
   References ................................................. 234
13.Lasing in Dye-doped Chiral Liquid Crystals: Influence of
   Defect Modes ............................................... 239
      Wolfgang Haase, Fedor Podgornou, Yuko Matsuhisa, and
      Masanori Ozaki
   13.1.Introduction .......................................... 239
   13.2.Experiment ............................................ 240
        13.2.1.Lasing in Cholesterics with Structural
               Defects ........................................ 241
               13.2.1.1.Preparation of Cholesterics ........... 241
               13.2.1.2.Cell Fabrication ...................... 241
               13.2.1.3.Preparation of СLC/TiO2 Dispersion .... 242
               13.2.1.4.The Experimental Setup ................ 242
               13.2.1.5.Experimental Results .................. 243
        13.2.2.Lasing in Ferroelectric Liquid Crystals ........ 243
               13.2.2.1.Sample Preparation .................... 244
               13.2.2.2.The Experimental Setup ................ 245
               13.2.2.3.Experimental Results .................. 245
        13.2.3.Conclusion ..................................... 248
   References ................................................. 248
14.Photonic Crystals based on Chiral Liquid Crystal ........... 251
      M. Ozaki, Y. Matsuhisa, H. Yoshida, R. Ozaki,
      and A. Fujii
   14.1.Introduction .......................................... 251
   14.2.Photonic Band Gap and Band Edge Lasing in Chiral
        Liquid Crystal ........................................ 252
        14.2.1.Laser Action in Cholesteric Liquid Crystal ..... 252
        14.2.2.Low-Threshold Lasing Based on Band-Edge
               Excitation in CLC .............................. 254
        14.2.3.Laser Action in Polymerized Cholesteric
               Liquid Crystal Film ............................ 255
        14.2.4.Electrically Tunable Laser Action in Chiral
               Smectic Liquid Crystal ......................... 256
   14.3.Twist Defect Mode in Cholesteric Liquid Crystal ....... 258
   14.4.Chiral Defect Mode Induced by Partial Deformation
        of Helix .............................................. 259
   14.5.Tunable Defect Mode Lasing in a Periodic Structure
        Containing CLC Layer as a Defect ...................... 262
   14.6.Summary ............................................... 265
   References ................................................. 266
15.Tunable Superprism Effect in Photonic Crystals ............. 269
      F. Clockler, S. Peters, U. Lemmer, and M. Cerken
   15.1.Introduction .......................................... 269
   15.2.The Superprism Effect ................................. 270
        15.2.1.Origin of the Superprism Effect ................ 270
        15.2.2.Performance Considerations for Superprsim
               Devices ........................................ 271
        15.2.3.Bragg-Stacks and Other ID Superprisms .......... 272
        15.2.4.Current State in Superprism Structures ......... 272
   15.3.Tunable Photonic Crystals ............................. 273
        15.3.1.Liquid Crystals ................................ 274
        15.3.2.Tuning by Pockels Effect ....................... 275
        15.3.3.All-Optical Tuning ............................. 276
        15.3.4.Other Tuning Mechanisms ........................ 278
   15.4.Tunable Superprism Structures ......................... 278
   15.5.ID Hybrid Organic-Anorganic Structures ................ 279
        15.5.1.Survey of Optically Nonlinear Organic
               Materials ...................................... 279
               15.5.1.1.Thermo-Optic Organic Materials ........ 280
               15.5.1.2.Electro-optic Organic Materials ....... 280
               15.5.1.3.All-optical Organic Materials ......... 281
        15.5.2.Numerical Simulation of a Doubly Resonant
               Structures for All-Optical Spatial Beam
               Switching ...................................... 282
               15.5.2.1.Beam Shifting for Two Active
                        Cavities .............................. 284
               15.5.2.2.Beam Shifting for One Active Cavity ... 284
               15.5.2.3.Beam Shifting for Active Coupling
                        Layers ................................ 284
   15.6.Conclusions and Outlook ............................... 286
   References ................................................. 286

III.Photonic Crystal Fibres ................................... 289

16.Preparation and Application of Functionalized Photonic
   Crystal Fibres ............................................. 291
      H. Bartelt,J. Kirchhof, J. Kobeike, K. Chuster,
      A. Schwuchow, K. Mörl, U. Röpke, J. Leppert,
      H. Lehmann, S. Smolka, M. Barth, O. Benson, S. Taccheo,
      and C.D. Andrea
   16.1.Introduction .......................................... 291
   16.2.General Preparation Techniques for PCFs ............... 292
   16.3.Silica-Based PCFs with Index Guiding .................. 292
        16.3.1.Specific Properties of Pure Silica PCFs ........ 293
        16.3.2.PCF with Very Large Mode Field Parameter
               (VLMA-PCF) ..................................... 295
        16.3.3.Doped Silica PCF with Germanium-Doped Holey
               Core ........................................... 297
        16.3.4.Highly Germanium-Doped Index Guiding PCF ....... 299
   16.4.Photonic Band Gap Fibres .............................. 302
   16.5.Non-Silica PCF ........................................ 305
   16.6.Selected Linear and Nonlinear Applications ............ 307
        16.6.1.Spectral Sensing ............................... 307
        16.6.2.Supercontinuum Generation ...................... 308
   16.7.Conclusions ........................................... 310
   References ................................................. 310
17.Finite Element Simulation of Radiation Losses in
   Photonic Crystal Fibers .................................... 313
      Jan Pomplun, Lin Zschiedrich, Roland Klose, Frank
      Schmidt, and Sven Burger
   17.1.I ntroduction ......................................... 313
   17.2.Formulation of Propagation Mode Problem ............... 314
   17.3.Discretization of Maxwell's Equations with the
        Finite Element Method ................................. 315
   17.4.Computation of Leaky Modes in Hollow Core Photonic
        Crystal Fibers ........................................ 328
   17.5.Goal Oriented Error Estimator ......................... 319
   17.6.Convergence of Eigenvalues Using Different Error
        Estimators ............................................ 321
   17.7.Optimization of HCPCF Design .......................... 324
   17.8.Kagome-Structured Fibers .............................. 325
   17.9.Conclusion ............................................ 329
   References ................................................. 330

IV.Plasmonic and Metamaterials ................................ 333

18.Optical Properties of Photonic/Plasmonic Structures
   in Nanocomposite Glass ..................................... 335
      H. Graener, A. Abdolvand, S. Wackerow, O. Kiriyenko,
      and W. Hergert
   18.1.Introduction .......................................... 335
   18.2.Experimental Investigations ........................... 335
   18.3.Calculation of Effective Permittivity ................. 339
        18.3.1.Extensions of the Method ....................... 344
   18.4.Summary ............................................... 345
   References ................................................. 346
19.Optical Properties of Disordered Metallic Photonic
   Crystal Slabs .............................................. 349
      D. Nau, A. Schönhardt, A. Christ, T. Zentgraf, Ch.
      Bauer, J. Kuhl, and H. Giessen
   19.1.Introduction .......................................... 349
   19.2.Sample Description and Disorder Models ................ 350
   19.3.Transmission Properties ............................... 357
   19.4.Bandstructure ......................................... 361
   19.5.Conclusion ............................................ 366
   References ................................................. 366
20.Superfocusing of Optical Beams Below the Diffraction
   Limit by Media with Negative Refraction .................... 369
      A. Husakou and J. Herrmann
   20.1.Introduction .......................................... 369
   20.2.Superfocusing of a Non-Moving Beam by the Combined
        Action of an Aperture and a Negative-Index Layer ...... 371
        20.2.1.Effective-Medium Approach ...................... 371
        20.2.2.Direct Numerical Solution of Maxwell
               Equations for Photonic Crystals ................ 373
   20.3.Focusing of Scanning Light Beams Below the
        Diffraction Limit Using a Saturable Absorber and
        a Negative-Refraction Material ........................ 376
        20.3.1.Effective-Medium Approach ...................... 377
        20.3.2.Direct Numerical Solution of Maxwell
               Equations for Photonic Crystals ................ 379
   20.4.Subdiffraction Focusing of Scanning Beams by a
        Negative-Refraction Layer Combined with a Nonlinear
        Kerr-Туре Layer ....................................... 381
        20.4.1.Effective-Medium Approach ...................... 381
        20.4.2.Direct Numerical Solution of Maxwell
               Equations for Photonic Crystals ................ 385
   20.5.Conclusion ............................................ 386
   References ................................................. 387
21.Negative Refraction in 2D Photonic Crystal Super-
   Lattice: Towards Devices in the IR and Visible Ranges ...... 389
      Y. Neve-Oz, M. Golosovsky, A. Frenkel, and D. Davidov
   21.1.Introduction .......................................... 389
   21.2.Design ................................................ 390
   21.3.Simulations, Results and Discussion ................... 392
        21.3.1.Wave Transmission Through the Superlattice
               Slab: Evidence for Negative Phase Velocity ..... 392
        21.3.2.Refraction Through a Superlattice Prism ........ 393
        21.3.3.Determination of the Refractive Indices
               Using the Equal Frequency Contours ............. 395
   21.4.Conclusions and Future Directions ..................... 397
   References ................................................. 398
22.Negative Permeability around 630 nm in Nanofabricated
   Vertical Meander Metamaterials ............................. 399
      Heinz Schweizer, Liwei Fu, Hedwig Gräbeldinger,
      Hongcang Guo, Na Liu, Stefan Kaiser, and Harald
      Giessen
   22.1.Introduction .......................................... 399
   22.2.Theoretical Approach .................................. 401
        22.2.1.Transmission Line Analysis ..................... 401
               22.2.1.1.Three Basic TL Circuits ............... 402
               22.2.1.2.Role of the S eries Capacitance ....... 403
        22.2.2.Numerical Simulations and Syntheses with TL
               Analysis ....................................... 404
               22.2.2.1.Metamaterials with Different Unit
                        Cells ................................. 404
               22.2.2.2.Numerical Simulation of Meander
                        Structures ............................ 408
   22.3.Experimental Approaches ............................... 410
        22.3.1.Fabrication Technologies ....................... 410
               22.3.1.1.Plane Metallic Matrices ............... 410
               22.3.1.2.Novel Meander Structure ............... 411
   22.3.2.Characterization of Fabricated Structures ........... 412
               22.3.2.1.Experimental Results of Meander
                        Strips ................................ 413
               22.3.2.2.Experimental Results of Meander
                        Plates ................................ 414
   22.4.Conclusion ............................................ 415

References .................................................... 425

Index ......................................................... 417


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:20:08 2019. Размер: 30,346 bytes.
Посещение N 2115 c 18.08.2009