Design of heterogeneous catalysts. New approaches based on synthesis, characterization and modeling (Weinheim, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDesign of heterogeneous catalysts. New approaches based on synthesis, characterization and modeling / ed. by Ozkan U.S. - Weinheim: Wiley-VCH, 2009. - xvii, 322 p.: ill. - ISBN 978-3-527-32079-0
 

Место хранения: 054 | Международный томографический центр CO РАН | Новосибирск

Оглавление / Contents
 
Preface ...................................................... XIII
List of Contributors ........................................... XV

1. Use of Oxide Ligands in Designing Catalytic Active Sites ..... 1
      Edward L. Lee and Israel E. Wachs

   1.1. Introduction ............................................ 1
   1.2. Molecular Structural Determination of Supported Metal
        Oxide Catalysts with In Situ Raman Spectroscopy ......... 3
   1.3. Characterization of AlOx, TiOx, and ZrOx Surface-
        Modified SiO2 ........................................... 3
   1.4. Anchoring Site of Surface M1Ox Species on Supported
        M2Ox/SiO2 ............................................... 5
   1.5. Molecular Structure of Dehydrated Supported V2O5/SiO2
        and V2O5/M2Ox/SiO2 Catalyst Systems ...................... 5
   1.6. Molecular Structure of Dehydrated Supported
        MoO3/SiO2 and MoO3/M2Ox/SiO2 Catalyst Systems ............ 8
   1.7. Molecular Structure of Dehydrated Supported
        Re2O7/SiO2 and Re2O7/M2Ox/SiO2 Catalyst Systems .......... 11
   1.8. Electronic Structure of Dehydrated Supported
        MOx/SiO2 and M2Ox / M2Ox/SiO2 Catalysts
        via In Situ UV-Vis Spectroscopy ........................ 14
   1.9. Determination of Surface Kinetic Parameters ............ 15
   1.10.Redox Surface Reactivity of Model Supported M1Ox/SiO2
        Catalysts .............................................. 16
   1.11.Redox Surface Reactivity of Supported M2Ox/M2Ox/SiO2
        Catalysts .............................................. 16
   1.12.Conclusions ............................................ 18
   References .................................................. 19

2. Optimal Design of Hierarchically Structured Porous
   Catalysts ................................................... 25
      Marc-Olivier Coppens and Gang Wang

   2.1. Introduction ........................................... 25
        2.1.1. Intrinsic Catalytic Activity and Selectivity:
               the Atomic and the Nanoscale .................... 25
        2.1.2. Catalyst Particle Size and Geometry:
               A Question of Reactor Engineering ............... 26
        2.1.3. Porous Catalyst Architecture and Optimization
               Methods ......................................... 27
        2.1.4. Learning from Nature ............................ 28
   2.2. Optimizing Mesopore Connectivity and Shape ............. 30
        2.2.1. Topology, Order, and Randomness ................. 30
        2.2.2. Surface Roughness and Fractal Morphology ........ 32

   2.3. Optimizing Catalysts by Macroscopic Distributions in
        Activity ............................................... 34
   2.4. Optimal Design of the Highway Network .................. 36
        2.4.1. Novel Capabilities in Synthesizing
               Hierarchical Pore Spaces ........................ 37
        2.4.2. Theoretical Optimization Studies:
               Opportunities for Optimal Design ................ 39
        2.4.3. Application to the Design of a Bimodal Porous
               Catalyst for NOx Abatement ...................... 47
   2.5. Conclusions ............................................ 49
   References .................................................. 50

3. Use of Dendrimers in Catalyst Design ........................ 59
      Bert D. Chandler, Jeong-Kyu Lee, Harold H. Kung, and
      Mayfair С. Kung

   3.1. Introduction ........................................... 59
   3.2. Modified Dendrimer Catalysts ........................... 60
        3.2.1. Dendrimer Synthesis ............................. 60
        3.2.2. Dendrimer Properties Important for Catalysis .... 61
        3.2.3. Cooperative Catalysis ........................... 61
        3.2.4. Site Isolation .................................. 64
   3.3. Indirect Effects of Dendrimer Architecture ............. 66
        3.3.1. Polarity Gradients .............................. 66
        3.3.2. Steric and Diffusion Effects .................... 67
        3.3.3. Comparing Dendrimers with Soluble Polymers ...... 68
        3.3.4. Other Novel Dendrimer Effects ................... 70
   3.4. Catalysis by Dendrimer Encapsulated Nanoparticles ...... 72
        3.4.1. Nanoparticle Synthesis .......................... 72
        3.4.2. Catalysis by Monometallic DENs .................. 73
        3.4.3. Bimetallic Nanoparticles ........................ 73
        3.4.4. Catalysis by Bimetallic DENs .................... 75
   3.5. Dendrimer Templated Nanocages .......................... 77
   3.6. Conclusion ............................................. 79
   References .................................................. 79

4. Rational Design Strategies for Industrial Catalysts ......... 83
      Saeed Alerasool, С.P. Kelkar, and Robert J. Farrauto

   4.1. Introduction ........................................... 83
   4.2. The First Stages Toward Commercialization of
        a Catalyst ............................................. 84
   4.3. Catalyst Discovery to Commercialization ................ 84
        4.3.1. Catalyst Preparation ............................ 84
        4.3.2. Catalyst Testing ................................ 85
        4.3.3. Advanced Testing in Accordance to the Duty
               Cycle ........................................... 86
        4.3.4. Aging Studies ................................... 86
        4.3.5. Kinetics ........................................ 87
        4.3.6. Catalyst Scale-Up ............................... 88
        4.3.7. Quality Control ................................. 89
   4.4. Example 1: Automobile Pollution Abatement Catalyst
        System ................................................. 89
        4.4.1. The Quality of the Fuel ......................... 90
        4.4.2. Base Metals Versus Precious Metals .............. 90
        4.4.3. Particulate Versus Monolithic Structures ........ 91
        4.4.4. The First Generation ............................ 91
        4.4.5. The Final Test .................................. 92
   4.5. Example 2: Dehydrogenation of Light Alkanes ............ 93
        4.5.1. Understanding Reaction Kinetics,
               Thermodynamics, and Process Constraints ......... 94
        4.5.2. Formulating the Catalyst ........................ 95
        4.5.3. Pilot Plant Testing ............................. 97
        4.5.4. Field Testing ................................... 98
        4.5.5. Commercial Launch ............................... 99
   4.6. Example 3: Petroleum Refining - Fluid Catalytic
        Cracking .............................................. 100
        4.6.1. Understanding Deactivation ..................... 101
        4.6.2. Age Distribution ............................... 105
        4.6.3. Attrition ...................................... 105
        4.6.4. Feed Effects ................................... 107
        4.6.5. Scale-Up and Commercialization ................. 109
   4.7. Conclusions ........................................... 109
   References ................................................. 110

5. Chiral Modification of Catalytic Surfaces .................. 113
      Zhen Ma and Francisco Zaera

   5.1. Introduction .......................................... 113
   5.2. Modification of Metal Surfaces by Cinchona Alkaloid
        and Related Compounds ................................. 115
        5.2.1. General Background ............................. 115
        5.2.2. Ordering Within the Adsorbed Layers ............ 116
        5.2.3. Modifier-Substrate Interactions ................ 118
        5.2.4. Adsorption Geometry ............................ 120
        5.2.5. Influence of Reaction Conditions ............... 122
        5.2.6. Competitive Adsorption of Modifiers ............ 125
   5.3. Modification of Metal Surfaces by Tartaric Acid and
        Related Compounds ..................................... 127
        5.3.1. General Background ............................. 127
        5.3.2. Long-Range Order Within the Adsorbed Layers .... 127
        5.3.3. Local Chirality on the Surface ................. 130
        5.3.4. Identification of Chiral Sites on Surfaces ..... 132
   5.4. Conclusions ........................................... 134
   References ................................................. 136

6. Catalytic Nanomotors ....................................... 141
      John Cibbs and Yiping Zhao

   6.1. Introduction .......................................... 141
        6.1.1. Biological Motors .............................. 142
        6.1.2. Artificial Catalytic Nanomotors ................ 142
   6.2. The Propulsion Mechanism of Catalytic Nanomotors ...... 244
        6.2.1. Diffusiophoresis ............................... 144
        6.2.2. Self-Electrophoresis ........................... 145
        6.2.3. Bubble Propulsion .............................. 148
        6.2.4. Interfacial Tension Gradients .................. 149
        6.2.5. Bioelectrochemical Propulsion .................. 250
   6.3. Advanced Design of Catalytic Nanomotors ............... 252
        6.3.1. Dynamic Shadowing Growth ....................... 252
        6.3.2. Rotary Si-Pt Nanorod Nanomotors ................ 252
        6.3.3. L-Shaped Nanorod Nanomotors .................... 152
        6.3.4. Rolling Nanospring ............................. 153
        6.3.5. Hinged Nanorods ................................ 254
   6.4. Applications, Challenges, and Perspectives ............ 257
   References ................................................. 258

7. Rational Design and High-Throughput Screening of Metal
   Open Frameworks for Gas Separation and Catalysis ........... 161
      David Farrusseng and Claude Mirodatos

   7.1. Introduction .......................................... 161
   7.2. MOF General Features and Brief State of the Art ....... 162
        7.2.1. A Building Block Construction .................. 162
        7.2.2. Robust Open, Functionalized, and Sizeable
               Frameworks ..................................... 262
        7.2.3. MOFs Synthesis ................................. 264
        7.2.4. Adsorption Properties of MOF ................... 266
        7.2.5. Rational Strategies to Design MOFs for
               Targeted Applications .......................... 167
   7.3. Combinatorial Design of MOF for C02 Capture in a PSA
        Process ............................................... 267
        7.3.1. Process Specifications ......................... 267
        7.3.2. General Properties of MOFs for CO2
               Adsorption ..................................... 268
        7.3.3. MOF Design for C02 Capture ..................... 272
               7.3.3.1. "Structural" Route for Design
                        Strategy .............................. 272
               7.3.3.2. "Functionalization" Route for
                        Design Strategy ....................... 272
        7.3.4. Combinatorial Screening Methodology at
               IRCELYON ....................................... 173
        7.3.5. Combinatorial Synthesis ........................ 174
               7.3.5.1. Protocol .............................. 174
               7.3.5.2. Method Validation ..................... 274
               7.3.5.3. Screening of Metal-BTC System ......... 275
        7.3.6. Characterization of Representative Samples ..... 277
        7.3.7. HT Testing and CO2-CH4 Isotherms of Selected
               Samples ........................................ 278
   7.4. MOF Design for Catalytic Application .................. 179
        7.4.1. Properties of MOF in Catalysis ................. 279
               7.4.1.1. Lewis Acid Catalysis .................. 180
               7.4.1.2. Bronsted Acid Catalysis ............... 181
               7.4.1.3. Basic and Enantioselective
                        Catalysis ............................. 182
               7.4.1.4. С-С Coupling .......................... 183
               7.4.1.5. Metal Catalysis ....................... 183
               7.4.1.6. Wall Functionalization ................ 183
               7. A.1.7. Postfunctionalization ................ 184
        7.4.2. MOFs - Are They "Heterogenized" Catalysts or
               Solid Catalysts? ............................... 185
               7.4.2.1. Engineering of Structural Defects
                        in MOF ................................ 185
               7.4.2.2. Probing Acid Centers by Alkylation
                        Reactions ............................. 185
               7.4.2.3. Catalyst Characterization ............. 187
               7.4.2.4. General Statements on MOF
                        Application for Catalysis ............. 188
   7.5. Conclusion ............................................ 188
   References ................................................. 189

8. Design of Bimetallic Catalysts: From Model Surfaces to
   Supported Catalysts ........................................ 195
      Jeffrey P. Bosco, Michael P. Humbert, and Jingguang
      С. Chen

   8.1. Introduction .......................................... 195
   8.2. Experimental and Theoretical Methods .................. 196
        8.2.1. Experimental Techniques ........................ 196
        8.2.2. DFT Modeling ................................... 199
   8.3. Results and Discussion ................................ 199
        8.3.1. UHV and DFT Studies on Pt-Ni Model Surfaces .... 199
               8.3.1.1. Adsorption and Desorption of
                        Hydrogen .............................. 200
               8.3.1.2. Disproportionation and
                        Hydrogenation of Cyclohexene .......... 202
        8.3.2. Characterization and Reactor Studies of
               Supported Pt-Ni Catalysts ...................... 205
               8.3.2.1. ТЕМ and EXAFS Characterization
                        of Ni/Pt/Al2O3 Catalysts .............. 205
   8.4. Conclusions ........................................... 211
   References ................................................. 211

9. Self-Assembled Materials for Catalysis ..................... 213
      Kake Zhu, Donghai Wang, and Jun Liu

   9.1. Introduction .......................................... 213
   9.2. Mesocale Design ....................................... 214
        9.2.1. Inclusion of Heteroatoms ....................... 216
               9.2.1.1. Acid Sites ............................ 216
               9.2.1.2. Dispersed Metal Oxides ................ 219
        9.2.2. Embedded Nanoparticles ......................... 220
        9.2.3. Nonsiliceous Mesoporous Materials .............. 221
               9.2.3.1. Molecule Self-Assembly to Mesoporous
                        Catalysts ............................. 222
               9.2.3.2. Nanoparticles Self-Assembly to
                        Mesoporous Catalysts .................. 222
        9.2.4. Self-Assembly of Zeolite Seeds into
               Mesophase ...................................... 223
        9.2.5. Organic Functional Groups as Catalysts ......... 224
   9.3. Designing Catalysts at the Nanoparticle Surfaces ...... 225
        9.3.1. Polyoxometalates: Nanoparticles with Cations ... 225
        9.3.2. Dendrimer-Stabilized Metal Nanoparticles ....... 226
   9.4. Perspectives .......................................... 226
   References ................................................. 227

10.Theory-Aided Catalyst Design ............................... 231
      Matthew Neurock

   10.1.Introduction .......................................... 231
   10.2.Catalytic Descriptors ................................. 234
        10.2.1.Electronic Descriptors ......................... 234
        10.2.2.Energetic Descriptors .......................... 235
        10.2.3.Adsorption Energies or Binding Energies ........ 236
        10.2.4.High-Throughput Screening ...................... 238
   10.3.High-Throughput Simulation and Design ................. 242
        10.3.1.NO Decomposition ............................... 244
        10.3.2.Vinyl Acetate (VAM) Synthesis .................. 249
   10.4.Controlled Patterning ................................. 252
   10.5.Catalyst Synthesis and Stability ...................... 252
   10.6.Conclusions ........................................... 253
   References ................................................. 254

11.Use of In Situ XAS Techniques for Catalysts'
   Characterization and Design ................................ 259
      Christophe Ceantet and Jean-Marc M. Millet

   11.1.Introduction .......................................... 259
   11.2.The X-Ray Absorption Techniques ....................... 260
        11.2.1.Principles and Feasibility ..................... 260
        11.2.2.Data Acquisition ............................... 262
        11.2.3.Spectral Analysis and Interpretations .......... 263
   11.3.Recent Applications of X-Ray Absorption Techniques
        to the Design of Heterogeneous Catalysts .............. 265
        11.3.1.Time Resolution ................................ 265
        11.3.2.High-Resolution XANES .......................... 271
        11.3.3.High Detection Sensitivity ..................... 277
        11.3.4.Spatial Resolution ............................. 278
        11.3.5.Coupling of Techniques ......................... 280
   11.4.Perspective ........................................... 285
        11.4.1.Time-Resolved Ultrafast X-Ray Absorption
               Spectroscopy ................................... 286
        11.4.2.X-Ray Emission Spectroscopy (XES) and
               Resonant Inelastic X-Ray Scattering
               Spectroscopy (RIXS) ............................ 287
   11.5.Conclusions ........................................... 290
   References ................................................. 291

12.Catalyst Design Through Dual Templating .................... 295
      Moises A. Carreon and Vadim V. Guliants

   12.1.Introduction .......................................... 295
   12.2.Surfactant-Assisted Self-Assembly of Mesoporous
        Metal Oxides .......................................... 297
        12.2.1.Fundamentals ................................... 297
        12.2.2.Thermal Stability Considerations ............... 297
        12.2.3.Mesostructuring via Evaporation-Induced Self-
               Assembly ....................................... 299
   12.3.Colloidal Sphere Templating of Macroporous Metal
        Oxides ................................................ 301
   12.4.Dual Templating of Metal Oxides ....................... 303
   12.5.Catalytic Applications ................................ 305
        12.5.1.Mesoporous Metal Oxides ........................ 305
        12.5.2.Macroporous Metal Oxides ....................... 310
        12.5.3.Metal Oxides Obtained via Dual Templating ...... 311
   12.6.Concluding Remarks .................................... 312

References .................................................... 313

Index ......................................................... 315


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:20:04 2019. Размер: 23,976 bytes.
Посещение N 2059 c 11.08.2009