Davidson P. An Introduction to magnetohydrodynamics (Cambridge, 2001). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDavidson P. An Introduction to magnetohydrodynamics. - Cambridge: Cambridge University Press, 2001. - xviii, 431 p.: ill. - (Cambridge texts in applied mathematics). - ISBN 978-0521-794879
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
Preface	page ................................................. xvii


Part A: The Fundamentals of MHD ................................. 1


Introduction: The Aims of Part A ................................ 1

1. A Qualitative Overview of MHD ................................ 3

   1.1. What is MHD? ............................................ 3
   1.2. A Brief History of MHD .................................. 6
   1.3. From Electrodynamics to MHD: A Simple Experiment ........ 8
        1.3.1. Some important parameters in electrodynamics
               and MHD .......................................... 8
        1.3.2. A brief reminder of the laws of
               electrodynamics .................................. 9
        1.3.3. A familiar high-school experiment ............... 11
        1.3.4. A summary of the key results for MHD ............ 18
   1.4. Some Simple Applications of MHD ........................ 18

2. The Governing Equations of Electrodynamics .................. 27

   2.1. The Electric Field and the Lorentz Force ............... 27
   2.2. Ohm's Law and the Volumetric Lorentz Force ............. 29
   2.3. Ampere's Law ........................................... 31
   2.4. Faraday's Law in Differential Form ..................... 32
   2.5. The Reduced Form of Maxwell's Equations for MHD ........ 34
   2.6. A Transport Equation for В ............................. 37
   2.7. On the Remarkable Nature of Faraday and of
        Faraday's Law .......................................... 37
        2.7.1. An historical footnote .......................... 37
        2.7.2. An important kinematic equation ................. 40
        2.7.3. The full significance of Faraday's law .......... 42
        2.7.4. Faraday's law in ideal conductors: Alfven's
               theorem ......................................... 44

3. The Governing Equations of Fluid Mechanics .................. 47

   Part 1: Fluid Flow in the Absence of Lorentz Forces ......... 47

   3.1. Elementary Concepts .................................... 47
        3.1.1. Different categories of fluid flow .............. 47
        3.1.2. The Navier-Stokes equation ...................... 59
   3.2. Vorticity, Angular Momentum and the Biot-Savart Law ... 61
   3.3. Advection and Diffusion of Vorticity ................... 64
        3.3.1. The vorticity equation .......................... 64
        3.3.2. Advection and diffusion of vorticity:
               temperature as a prototype ...................... 66
        3.3.3. Vortex line stretching .......................... 70
   3.4. Kelvin's Theorem, Helmholtz's Laws and Helicity ........ 71
        3.4.1. Kelvin's Theorem and Helmholtz's Laws ........... 71
        3.4.2. Helicity ........................................ 74
   3.5. The Prandtl-Batchelor Theorem .......................... 77
   3.6. Boundary Layers, Reynolds Stresses and Turbulence
        Models ................................................. 81
        3.6.1. Boundary layers ................................. 81
        3.6.2. Reynolds stresses and turbulence models ......... 83
   3.7. Ekman Pumping in Rotating Flows ........................ 90

   Part 2: Incorporating the Lorentz Force ..................... 95

   3.8. The Full Equations of MHD and Key Dimensionless
        Groups ................................................. 95
   3.9. Maxwell Stresses ....................................... 97

4. Kinematics of MHD: Advection and Diffusion of a Magnetic
   Field ...................................................... 102

   4.1. The Analogy to Vorticity .............................. 102
   4.2. Diffusion of a Magnetic Field ......................... 103
   4.3. Advection in Ideal Conductors: Alfven's Theorem ....... 104
        4.3.1. Alfven's theorem ............................... 104
        4.3.2. An aside: sunspots ............................. 106
   4.4. Magnetic Helicity ..................................... 108
   4.5. Advection plus Diffusion .............................. 109
        4.5.1. Field sweeping ................................. 109
        4.5.2. Flux expulsion ................................. 110
        4.5.3. Azimuthal field generation by differential
               rotation ....................................... 114
        4.5.4. Magnetic reconnection .......................... 115

5. Dynamics at Low Magnetic Reynolds Numbers .................. 117

   5.1. The Low-Rm Approximation in MHD ....................... 118

   Part 1: Suppression of Motion .............................. 119

   5.2. Magnetic Damping ...................................... 119
        5.2.1. The destruction of mechanical energy via
               Joule dissipation .............................. 120
        5.2.2. The damping of a two-dimensional jet ........... 121
        5.2.3. Damping of a vortex ............................ 122
   5.3. A Glimpse at MHD Turbulence ........................... 128
   5.4. Natural Convection in the Presence of a Magnetic
        Field ................................................. 132
        5.4.1. Rayleigh-Benard convection ..................... 132
        5.4.2. The governing equations ........................ 133
        5.4.3. An energy analysis of the Rayleigh-Benard
               instability .................................... 134
        5.4.4. Natural convection in other configurations ..... 137

   Part 2: Generation of Motion ............................... 139

   5.5. Rotating Fields and Swirling Motions .................. 139
        5.5.1. Stirring of a long column of metal ............. 139
        5.5.2. Swirling flow induced between two parallel
               plates ......................................... 142
   5.6. Motion Driven by Current Injection .................... 145
        5.6.1. A model problem ................................ 145
        5.6.2. A useful energy equation ....................... 146
        5.6.3. Estimates of the induced velocity .............. 148
        5.6.4. A paradox ...................................... 149

   Part 3: Boundary Layers .................................... 151

   5.7. Hartmann Boundary Layers .............................. 151
        5.7.1. The Hartmann Layer ............................. 151
        5.7.2. Hartmann flow between two planes ............... 152
   5.8. Examples of Hartmann and Related Flows ................ 154
        5.8.1. Flow-meters and MHD generators ................. 154
        5.8.2. Pumps, propulsion and projectiles .............. 155
   5.9. Conclusion ............................................ 157

6. Dynamics at Moderate to High Magnetic Reynolds' Number ..... 159

   6.1. Alfven Waves and Magnetostrophic Waves ................ 160
        6.1.1. Alfven waves ................................... 160
        6.1.2. Magnetostrophic waves .......................... 163
   6.2. Elements of Geo-Dynamo Theory ......................... 166
        6.2.1. Why do we need a dynamo theory for the
               earth? ......................................... 166
        6.2.2. A large magnetic Reynolds number is needed ..... 171
        6.2.3. An axisymmetric dynamo is not possible ......... 174
        6.2.4. The influence of small-scale turbulence:
               the α-effect ................................... 177
        6.2.5. Some elementary dynamical considerations ....... 185
        6.2.6. Competing kinematic theories for the geo-
               dynamo ......................................... 197
   6.3. A Qualitative Discussion of Solar MHD ................. 199
        6.3.1. The structure of the sun ....................... 200
        6.3.2. Is there a solar dynamo? ....................... 201
        6.3.3. Sunspots and the solar cycle ................... 201
        6.3.4. The location of the solar dynamo ............... 203
        6.3.5. Solar flares ................................... 203
   6.4. Energy-Based Stability Theorems for Ideal MHD ......... 206
        6.4.1. The need for stability theorems in ideal
               MHD: plasma containment ........................ 207
        6.4.2. The energy method for magnetostatic
               equilibria ..................................... 208
        6.4.3. An alternative method for magnetostatic
               equilibrium .................................... 213
        6.4.4. Proof that the energy method provides both
               necessary and sufficient conditions for
               stability ...................................... 215
        6.4.5. The stability of non-static equilibria ......... 216
   6.5. Conclusion ............................................ 220

7. MHD Turbulence at Low and High Magnetic Reynolds Number .... 222

   7.1. A Survey of Conventional Turbulence ................... 223
        7.1.1. A historical interlude ......................... 223
        7.1.2. A note on tensor notation ...................... 227
        7.1.3. The structure of turbulent flows: the
               Kolmogorov picture of turbulence ............... 229
        7.1.4. Velocity correlation functions and the
               Karman-Howarth equation ........................ 235
        7.1.5. Decaying turbulence: Kolmogorov's law,
               Loitsyansky's integral, Landau's angular
               momentum and Batchelor's pressure forces ....... 240
        7.1.6. On the difficulties of direct numerical
               simulations .................................... 247
   7.2. MHD Turbulence ........................................ 249
        7.2.1. The growth of anisotropy at low and high Rm ... 249
        7.2.2. Decay laws at low Rm ........................... 252
        7.2.3. The spontaneous growth of a magnetic field
               at high Rm ..................................... 256
   7.3. Two-Dimensional Turbulence ............................ 260
        7.3.1. Batchelor's self-similar spectrum and the
               inverse energy cascade ......................... 260
        7.3.2. Coherent vortices .............................. 263
        7.3.3. The governing equations of two-dimensional
               turbulence ..................................... 264
        7.3.4. Variational principles for predicting the
               final state in confined domains ................ 267


Part B: Applications in Engineering and Metallurgy ............ 273


Introduction: An Overview of Metallurgical Applications ....... 273

8. Magnetic Stirring Using Rotating Fields .................... 285
   8.1. Casting, Stirring and Metallurgy ...................... 285
   8.2. Early Models of Stirring .............................. 289
   8.3. The Dominance of Ekman Pumping in the Stirring
        of Confined Liquids ................................... 294
   8.4. The Stirring of Steel ................................. 298

9. Magnetic Damping Using Static Fields ....................... 301

   9.1. Metallurgical Applications ............................ 301
   9.2. Conservation of Momentum, Destruction of Energy
        and the Growth of Anisotropy .......................... 304
   9.3. Magnetic Damping of Submerged Jets .................... 308
   9.4. Magnetic Damping of Vortices .......................... 312
        9.4.1. General considerations ......................... 312
        9.4.2. Damping of transverse vortices ................. 314
        9.4.3. Damping of parallel vortices ................... 317
        9.4.4. Implications for low-Rm turbulence ............. 323
   9.5. Damping of Natural Convection ......................... 324
        9.5.1. Natural convection in an aluminium ingot ....... 324
        9.5.2. Magnetic damping in an aluminium ingot ......... 329

10.Axisymmetric Flows Driven by the Injection of
   Current .................................................... 332

   10.1.The VAR Process and a Model Problem ................... 332
        10.1.1.The VAR process ................................ 332
        10.1.2.Integral constraints on the flow ............... 336
   10.2.The Work Done by the Lorentz Force .................... 338
   10.3.Structure and Scaling of the Flow ..................... 340
        10.3.1.Differences between confined and unconfined
               flows .......................................... 340
        10.3.2.Shercliff s self-similar solution for
               unconfined flows ............................... 342
        10.3.3.Confined flows ................................. 344
   10.4.The Influence of Buoyancy ............................. 346
   10.5.Stability of the Flow and the Apparent Growth of
        Swirl ................................................. 348
        10.5.1.An extraordinary experiment .................... 348
        10.5.2.There is no spontaneous growth of swirl! ....... 350
   10.6.Flaws in the Traditional Explanation for the
        Emergence of Swirl .................................... 351
   10.7.The Role of Ekman Pumping in Establishing the
        Dominance of Swirl .................................... 353
        10.7.1.A glimpse at the mechanisms .................... 353
        10.7.2.A formal analysis .............................. 356
        10.7.3.Some numerical experiments ..................... 358

11.MHD Instabilities in Reduction Cells ....................... 363

   11.1.Interfacial Waves in Aluminium Reduction Cells ........ 363
        11.1.1.Early attempts to produce aluminium by
               electrolysis ................................... 363
        11.1.2.The instability of modern reduction cells ...... 364
   11.2.A Simple Mechanical Analogue for the Instability ...... 368
   11.3.Simplifying Assumptions ............................... 372
   11.4.A Shallow-Water Wave Equation and Key
        Dimensionless Groups .................................. 374
        11.4.1.A shallow-water wave equation .................. 374
        11.4.2.Key dimensionless groups ....................... 378
   11.5.Travelling Wave and Standing Wave Instabilities ....... 379
        11.5.1.Travelling waves ............................... 379
        11.5.2.Standing waves in circular domains ............. 380
        11.5.3.Standing waves in rectangular domains .......... 381
   11.6.Implications for Reduction Cell Design ................ 385

12.High-Frequency Fields: Magnetic Levitation and Induction
   Heating .................................................... 387

   12.1.The Skin Effect ....................................... 388
   12.2.Magnetic Pressure, Induction Heating and High-
        Frequency Stirring .................................... 390
   12.3.Applications in the Casting of Steel, Aluminium
        and Super-Alloys ...................................... 394
        12.3.1.The induction furnace .......................... 394
        12.3.2.The cold crucible .............................. 397
        12.3.3.Levitation melting ............................. 398
        12.3.4.Processes which rely on magnetic repulsion
               EM valves and EM casters ....................... 403

Appendices

1.Vector Identities and Theorems .............................. 405
2.Stability Criteria for Ideal MHD Based on the
  Hamiltonian ................................................. 407
3.Physical Properties of Liquid Metals ........................ 417
4.MHD Turbulence at Low Rm .................................... 418

Bibliography .................................................. 422

Suggested Books on Fluid Mechanics ............................ 422
Suggested Books on Electromagnetism ........................... 422
Suggested Books on MHD ........................................ 423

Journal References for Part В and Appendix 2 .................. 423

Subject Index ................................................. 427


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:20:04 2019. Размер: 20,040 bytes.
Посещение N 2303 c 11.08.2009