Wiehe I.A. Process chemistry of petroleum macromolecules (Boca Raton, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаWiehe I.A. Process chemistry of petroleum macromolecules. - Boca Raton: CRC Press, 2008. - 427 p.: ill. - (Chemical industries; 121). - ISBN 978-157444-787-3
 

Место хранения: 042 | Институт химии нефти СО РАН | Томск

Оглавление / Contents
 
Chapter 1 Introduction to the Processing of Petroleum 
          Macromolecules ........................................ 1

1.1. Importance and Challenges of Petroleum ..................... 1
1.2. World Petroleum Economics .................................. 3
     1.2.1. OPEC ................................................ 3
     1.2.2. China and India ..................................... 4
     1.2.3. United States and Canada ............................ 5
     1.2.4. When Will Petroleum Run Out? ........................ 6
     1.2.5. Refinery Capacity ................................... 8
     1.2.6. Effect of Threat of Global Warming .................. 9
1.3. Origin of Petroleum ....................................... 11
1.4. Production and Transport of Petroleum ..................... 13
1.5. Refinery Processing ....................................... 14
     1.5.1. Crude Processing Unit .............................. 15
     1.5.2. Vacuum Distillation ................................ 16
     1.5.3. Fluid Catalytic Cracking ........................... 16
     1.5.4. Gas Oil Hydrocracking .............................. 18
     1.5.5. Naphtha Reforming .................................. 18
     1.5.6. Resid Processing ................................... 19
            1.5.6.1. Visbreaking ............................... 19
            1.5.6.2. Coking .................................... 19
            1.5.6.3. Resid Hydrotreating and Hydroconversion ... 20
1.6. Challenges for Processing Petroleum Macromolecules ........ 20
     1.6.1. Aromatic By-Product ................................ 20
     1.6.2. Produce Feed for Secondary Upgrading ............... 21
     1.6.3. Minimize Hydrocarbon Gas By-Product ................ 22
     1.6.4. Mitigate Fouling ................................... 22
1.7. Chemical Engineering Approach ............................. 22
     References ................................................ 25

Chapter 2 Characterization of Petroleum Macromolecules ......... 27

2.1. Class Separation .......................................... 27
     2.1.1. Volatiles and Coke ................................. 27
     2.1.2. Asphaltenes and Resins ............................. 27
     2.1.3. Saturates and Aromatics ............................ 29
     2.1.4. Reproducibility of Class Separation ................ 29
     2.1.5. The Concept of Asphaltenes ......................... 29
     2.1.6. Unreacted Resid Fractions .......................... 30
     2.1.7. Fractions of Thermally Converted Resid ............. 32
     2.1.8. Fractions of the Thermal Conversion of Resid
            Fractions .......................................... 33
2.2. Solvent-Resid Phase Diagram ............................... 35
     2.2.1. The Concept of a Compositional Map ................. 35
     2.2.2. Measurement of Molecular Attraction ................ 35
     2.2.3. Measurement of Molecular Weight .................... 36
     2.2.4. Recommended Compositional Map ...................... 38
     2.2.5. Transformations between Classes .................... 39
     2.2.6. Conclusions and Implications ....................... 40
2.3. High Performance Liquid Chromatography .................... 41
     2.3.1. HPLC Instrument .................................... 41
     2.3.2. Separation ......................................... 41
     2.3.3. Aromaticity Measurement Using the Diode Array
            Detector ........................................... 42
     2.3.4. Mass Measurement Using the Evaporative Mass
            Detector ........................................... 43
     2.3.5. HPLC Analysis ...................................... 43
     2.3.6. Example Applications of Analytical HPLC ............ 45
            2.3.6.1. Estimate of Average Carbon Number
                     and Molecular Weight ...................... 45
            2.3.6.2. Distillation of Heavy Vacuum Gas Oil ...... 48
            2.3.6.3. Hydrotreating ............................. 48
            2.3.6.4. Fluid Catalytic Cracking .................. 50
     2.3.7. Preparative HPLC of Heavy Coker Liquids ............ 50
            2.3.7.1. Heavy Coker Gas Oil ....................... 50
            2.3.7.2. Once-Through Coker Scrubber Bottoms ....... 54
2.4. Short-Path Distillation (Distact Distillation) ............ 59
2.5. Combining Short-Path Distillation and Preparative HPLC .... 62
2.6. Other Methods to Characterize Petroleum Macromolecules .... 62
     2.6.1. Metals ............................................. 63
     2.6.2. Naphthenic Acids ................................... 64
     2.6.3. Petroleomics ....................................... 64
2.7. Physical Structure ........................................ 68
     2.7.1. Scattering Data .................................... 68
     2.7.2. Effect of Temperature .............................. 70
     2.7.3. Model of Sirota .................................... 70
     References ................................................ 71

Chapter 3 Pendant-Core Building Block Model of Petroleum
          Resids ............................................... 75

3.1. Approach to Develop Approximations ........................ 75
3.2. The Simplest Approximation to the Distribution of
     Petroleum Macromolecules .................................. 76
3.3. Model for Conradson Carbon Residue (CCR) .................. 77
3.4. Conradson Carbon Residue of Low-Molecular-Weight
     Fractions ................................................. 82
3.5. Elemental Analysis of Conradson Carbon Residue ............ 83
3.6. Elemental Analysis of Distillable Liquid Products ......... 85
3.7. Variation of Conradson Carbon Residue with Processing ..... 87
3.8. Conradson Carbon Residue Distribution ..................... 90
3.9. Pendant-Core Model Compounds: Discotic Liquid Crystals .... 91
3.10.Limitations and Future Developments ....................... 94
     3.10.1. Successes ......................................... 94
     3.10.2. Limitations ....................................... 94
     3.10.3. Innovations ....................................... 94
     References ................................................ 95

Chapter 4 Thermal Conversion Kinetics .......................... 97

4.1. Introduction .............................................. 97
     4.1.1. Potential Applications ............................. 97
     4.1.2. Wish List for a Kinetic Model ...................... 97
     4.1.3. Need for Resid Thermal Conversion Research ......... 98
4.2. Pseudocomponent Model with Stoichiometric Coefficients .... 99
4.3. Phase-Separation Mechanism for Coke Formation ............ 101
     4.3.1. Background ........................................ 101
     4.3.2. Experimental Procedure ............................ 102
     4.3.3. Experimental Results .............................. 103
            4.3.3.1. Coke Induction Period .................... 103
            4.3.3.2. Asphaltene Maximum ....................... 103
            4.3.3.3. Decrease of Asphaltenes Parallels
                     Decrease of Heptane Solubles ............. 105
            4.3.3.4. High Reactivity of Unconverted
                     Asphaltenes .............................. 105
     4.3.4. Phase-Separation Kinetic Model .................... 107
     4.3.5. Derivation of Equations for the Phase-Separation
            Kinetic Model ..................................... 109
     4.3.6. Comparison of Kinetic Model with Quantity Data .... 110
     4.3.7. Comparison of the Kinetic Model with Quality
            Data .............................................. 111
            4.3.7.1. Asphaltene Hydrogen Content and
                     Molecular Weight ......................... 111
            4.3.7.2. Asphaltene Association Factor ............ 115
            4.3.7.3. Coke Molecular Weight .................... 116
            4.3.7.4. Carbonaceous Mesophase ................... 116
     4.3.8. Summary of Phase-Separation Kinetic Model
            and Mechanism ..................................... 119
4.4. Series Reaction Kinetic Model ....................... 120
     4.4.1. Some New Resid Thermal Conversion Data ............ 120
            4.4.1.1. Cold Lake Vacuum Resid with 50%
                     Initial Asphaltenes ...................... 120
            4.4.1.2. Longer Reaction Times at 400°С ........... 121
     4.4.2. Derivation of the Series Reaction Model ........... 121
     4.4.3. Comparison of the Series Reaction Model with
            400°С Data ........................................ 125
     4.4.4. Linear Relationships between the Fractions ........ 126
     4.4.5. Comparison of the Series Reaction Kinetic Model
            with Data at 370°С and 420°С ...................... 131
     4.4.6. Linear Relationships between Fractions at
            Different Temperatures ............................ 132
     4.4.7. Open Reactor Data on Arabian Heavy Vacuum Resid ... 134
     4.4.8. Closed Reactor Data ............................... 140
            4.4.8.1. Thermolysis of Cold Lake Vacuum Resid
                     at400°С .................................. 141
            4.4.8.2. Closed Reactor Solubility Relationship ... 141
            4.4.8.3. Thermolysis of Arabian Heavy Vacuum
                     Resid at 400°С ........................... 143
            4.4.8.4. Thermolysis of Hondo Vacuum Resid at
                     400°С .................................... 144
            4.4.8.5. Thermolysis of Refinery Blend
                     Atmospheric Resid in a Closed Reactor .... 145
     4.4.9. Hydrogen Balance Constraints on Stoichiometric
            Coefficients ...................................... 147
            4.4.9.1. Evaluation of Parameters ................. 149
            4.4.9.2. Comparison of Model with Experimental
                     Data ..................................... 151
     4.4.10.Simplified Kinetic Model .......................... 156
     4.4.11.Thermolysis of Cold Lake Vacuum Resid at 475°С .... 158
4.5. TGA Kinetics of Resids ................................... 161
4.6. Comparison with Wish List ................................ 163
     4.6.1. Quantitatively Describes Kinetic Data ............. 163
     4.6.2. Convenient to Use ................................. 164
     4.6.3. Applies to Wide Variety of Feeds .................. 164
     4.6.4. Predicts the Effect of Changing Initial
            Concentrations .................................... 164
     4.6.5. Model Has a Minimum Number of Adjustable
            Parameters and/or Evaluates Parameters from
            Characterization Data ............................. 164
     4.6.6. Predicts the Effect of Changing Reactor Type ...... 165
     4.6.7. Provides Insight for New Innovations .............. 165
     4.6.8. Predicts Properties of Products ................... 165
4.7. Natural Hydrogen Donors .................................. 166
     4.7.1. Measurement of Donor Hydrogen Concentration ....... 166
     4.7.2. Measurement of Hydrogen Donor Relative
            Reactivity ........................................ 168
     4.7.3. Effect of Thermolysis on Donor Hydrogen of
            Resids ............................................ 170
     4.7.4. Effect of Very Reactive Hydrogen Donors on
            Resid Thermolysis ................................. 172
     4.7.5. Implications of Donor Hydrogen in the
            Conversion of Resids .............................. 175
4.8. Accomplishments, Limitations, and Future Developments .... 176
     4.8.1. Accomplishments ................................... 176
     4.8.2. Limitations and Future Developments ............... 177
     References ............................................... 177

Chapter 5 Phase Behavior ...................................... 181

5.1. Introduction ............................................. 181
     5.1.1. Target and Approach ............................... 181
     5.1.2. Causes of Insolubility ............................ 182
            5.1.2.1. Hydrogen Bonding or Other Electron
                     Donor-Acceptor Interaction ............... 182
            5.1.2.2. High Molecular Weight .................... 183
            5.1.2.3. Difference in Dispersion Interactions
                     between Like and Unlike Molecules ........ 183
            5.1.2.4. The Solute below Its Crystalline
                     Melting Point ............................ 183
            5.1.2.5. A Component of the Mixture Near or
                     Above Its Critical Point ................. 184
            5.1.2.6. Polarity ................................. 184
5.2. Two-Dimensional Solubility Parameters .................... 184
     5.2.1. Previous Solvent Selection Methods ................ 184
     5.2.2. Development of the Two-Dimensional Solubility
            Parameter ......................................... 186
            5.2.2.1. Relative Importance of Polar
                     Interactions ............................. 186
            5.2.2.2. Solubility Parameter Components .......... 187
            5.2.2.3. Basic Postulates ......................... 188
            5.2.2.4. Experiments .............................. 189
            5.2.2.5. Evaluation of Solubility Parameter
                     Components ............................... 190
            5.2.2.6. Evaluation of Polygon Solubility Areas ... 192
            5.2.2.7. Mixtures of Solvents and Nonsolvents ..... 193
            5.2.2.8. Solvents from Mixtures of Nonsolvents .... 194
            5.2.2.9. Degree of Success ........................ 195
     5.2.3. Application to Petroleum Macromolecules ........... 196
            5.2.3.1. Fractions of Cold Lake Vacuum Resid ...... 196
            5.2.3.2. Coal-Derived Liquids ..................... 201
            5.2.3.3. Discussion of Results and Conclusions .... 204
5.3. The Oil Compatibility Model .............................. 205
     5.3.1. Physical Model of Petroleum ....................... 206
     5.3.2. Flocculation and Oil Solubility Parameter ......... 207
            5.3.2.1. Basic Hypothesis ......................... 208
            5.3.2.2. Insolubility Number and Solubility
                     Blending Number .......................... 208
     5.3.3. Mixtures of Oil and Test Liquid ................... 210
     5.3.4. Mixtures of Oils .................................. 211
     5.3.5. Blending of Souedie and Forties Crudes ............ 212
     5.3.6. Refinery Processing of Souedie and Forties
            Crude Blends ...................................... 214
     5.3.7. TheP-Test ......................................... 214
            5.3.7.1. Derivation of the P-Test ................. 215
            5.3.7.2. Comparison of the P-Test and the Oil
                     Compatibility Model for Single Oils ...... 216
            5.3.7.3. Comparison of the P-Test and the Oil
                     Compatibility Model for Oil Mixtures ..... 217

     5.3.8. Solubility Parameter Model of Mertens Used
            by Andersen ....................................... 218
     5.3.9. Incompatible Pairs of Crude Oils .................. 219
     5.3.10.Self-Incompatible Oils ............................ 220
     5.3.11.Nearly Incompatible Oils .......................... 222
            5.3.11.1.Distance from Incompatibility ............ 222
            5.3.11.2.Fouling by Oil Blends .................... 222
     5.3.12.Application to Refinery Process Oils .............. 224
            5.3.12.1.Hydrotreater Plugging Problem ............ 225
            5.3.12.2.Compatibility Testing .................... 226
            5.3.12.3.Compatibility Numbers for Components
                     with Asphaltenes ......................... 227
            5.3.12.4.Nonsolvent Oil Dilution Test ............. 228
            5.3.12.5.Solvent Oil Equivalence Test ............. 229
            5.3.12.6.Chlorobenzene Equivalence Test ........... 229
            5.3.12.7.Overall Range of Compatibility Numbers ... 230
            5.3.12.8.Root Cause Analysis ...................... 231
            5.3.12.9.Mitigating Action ........................ 232
     5.3.13.Change of Compatibility Numbers with Thermal
            Conversion ........................................ 232
            5.3.13.1.WRI Coking Indexes to Predict Coke
                     Induction Period ......................... 232
            5.3.13.2.Oil Compatibility Model for Predicting
                     Induction Period ......................... 233
     5.3.14.Status of the Application of the Oil
            Compatibility Model to Crude Oils ................. 234
     5.3.15.Oil Compatibility Test Procedures ................. 235
            5.3.15.1.Check Oil ................................ 235
            5.3.15.2.Check for Asphaltenes .................... 236
            5.3.15.3.Heptane Dilution Test .................... 237
            5.3.15.4.Toluene Equivalence Test ................. 237
            5.3.15.5.Solvent Oil Equivalence Test ............. 238
            5.3.15.6.Nonsolvent Oil Equivalence ............... 238
     5.3.16.Effect of Changing the Normal Paraffin ............ 239
            5.3.16.1.OCM Approximate Method for Normal
                     Paraffin Nonsolvents ..................... 241
            5.3.16.2.Mixing Molecules of Different Sizes ...... 242
            5.3.16.3.The Regular Flory-Huggins Model .......... 245
            5.3.16.4.Hirschberg Approximations ................ 248
            5.3.16.5.Cimino Approximations .................... 249
            5.3.16.6.Wang and Buckley Approximations .......... 250
            5.3.16.7.Yarranton et al. Approximations .......... 250
            5.3.16.8.Comparison of Yarranton RF-H and OCM
                     Approximate Method with Flocculation
                     Data ..................................... 252
            5.3.16.9.Conclusions and Discussion of Results .... 254
5.4. Effect of Pressure on Asphaltene Solubility for Live
     Oils ..................................................... 256
5.5. Future Needs for Asphaltene Phase Behavior ............... 257
     5.5.1. Asphaltene Association ............................ 257
     5.5.2. Role of Resins in Asphaltene Solubility ........... 258
     References ............................................... 262

Chapter 6 Fouling Mitigation .................................. 267

6.1. Introduction ............................................. 267
     6.1.1. Definition of Fouling ............................. 268
     6.1.2. Incentives ........................................ 268
6.2. Fouling Mitigation Strategy .............................. 269
     6.2.1. Most Common Causes ................................ 269
     6.2.2. Diagnosis ......................................... 270
            6.2.2.1. Process Conditions/History ............... 270
            6.2.2.2. Analysis of the Foulant .................. 270
            6.2.2.3. Analysis of the Oil ...................... 272
     6.2.3. Investigation ..................................... 272
     6.2.4. Innovation ........................................ 273
     6.2.5. Mitigation ........................................ 273
6.3. Case of Fouling Caused by Polymerization of Conjugated
     Olefins .................................................. 274
     6.3.1. Analysis of Popcorn Coke .......................... 274
     6.3.2. Polymerization Hypothesis ......................... 275
     6.3.3. Measurement of Conjugated Olefin Concentration .... 275
     6.3.4. Possible Mitigation Actions ....................... 276
     6.3.5. Flexicoker Fractionator Fouling ................... 277
6.4. Case of Heat Exchanger Fouling after Resid
     Hydrotreater ............................................. 279
     6.4.1. Microscopic Examination of Feeds and Products ..... 279
     6.4.2. Precursor Analyses ................................ 279
     6.4.3. Cause of Asphaltene Insolubility .................. 281
     6.4.4. Case Study Conclusion ............................. 282
6.5. Asphaltene Dispersants ................................... 282
     6.5.1. Measurement of Dispersant Effectiveness ........... 283
     6.5.2. Dispersant Head Group ............................. 283
     6.5.3. Linear versus Branched Alkyl Chains ............... 284
     6.5.4. Synthesis of Alkyl Aromatic Sulfonic Acids ........ 285
            6.5.4.1. Number of Aromatic Rings ................. 286
            6.5.4.2. Alkyl Chain Length ....................... 287
            6.5.4.3. Degree of Branching ...................... 287
            6.5.4.1. Make Asphaltenes Soluble in Heptane ...... 288
     6.5.6. Conclusions on Asphaltene Dispersants ............. 288
     6.5.7. Future Needs for Synthetic Dispersants ............ 289
6.6. Other Cases of Insoluble Asphaltenes on Cooling .......... 289
     6.6.1. Mechanism and Identification ...................... 289
     6.6.2. Mitigating Solutions .............................. 290
6.7. Thermal Coke Formation ................................... 292
     6.7.1. Definition, Mechanism, and Identification ......... 292
     6.7.2. Mitigating Solutions .............................. 294
6.8. Oil Incompatibility ...................................... 296
     6.8.1. Mechanism and Identification ...................... 296
     6.8.2. Mitigating Solutions .............................. 297
6.9. Engineering Methods for Fouling Mitigation ............... 298
6.10.Limitations and Future Developments ...................... 298
     References ............................................... 299

Chapter 7  Separation of Petroleum ............................ 301

7.1. Desalting ................................................ 301
     7.1.1. Rag Layer Caused by Incompatible or Nearly
            Incompatible Oils ................................. 303
     7.1.2. Rag Layer Caused by Inorganic Particles ........... 303
     7.1.3. Rag Layer Caused by Naphthenic Acids and
            Naphthenic Acid Salts ............................. 304
7.2. Maximum Potential Yield by Separation .................... 304
     7.2.1. Primary and Secondary Upgrading ................... 304
     7.2.2. Experimental ...................................... 305
     7.2.3. Separation of Unconverted Heavy Oils .............. 306
     7.2.4. Conradson Carbon Separability Limit ............... 307
     7.2.5. Separation of Thermally Converted Heavy Oils ...... 310
     7.2.6. Separation of Vanadium and Nickel from Heavy 
            Oils .............................................. 312
     7.2.7. Do Even Better: Thermal Conversion with Recycle ... 316
     7.2.8. Conclusions on Maximum Potential Yield by
            Separation ........................................ 318
7.3. Laboratory Solvent Deasphalting with a Wider Range of
     Liquids .................................................. 319
     7.3.1. Experimental ...................................... 319
     7.3.2. Results for Separation of Conradson Carbon
            Residue ........................................... 320
     7.3.3. Effect of Temperature ............................. 323
     7.3.4. Results for Separation of Metals .................. 323
     7.3.5. Results on Athabasca Bitumen ...................... 326
7.4. Solvent Deasphalting as a Process ........................ 329
     7.4.1. Objectives ........................................ 329
     7.4.2. Commercial Processes .............................. 329
     7.4.3. Pilot Plant Solvent Deasphalting Results .......... 331
     References ............................................... 335

Chapter 8 Coking .............................................. 337

8.1. Process Objectives ....................................... 337
     8.1.1. Catalyst Poison Rejection Process ................. 338
     8.1.2. Metallurgical Quality Coke ........................ 339
8.2. Commercial Cokers ........................................ 339
     8.2.1. Delayed Cokers .................................... 339
     8.2.2. Fluid Coking and Flexicoking ...................... 342
8.3. Other Coking/Pyrolysis Technologies ...................... 345
     8.3.1. ART Process ....................................... 345
     8.3.2. 3D Process ........................................ 346
     8.3.3. FTC Process ....................................... 346
     8.3.4. Eureka Process .................................... 347
     8.3.5. LR-Flash Coker .................................... 349
8.4. The Innovation Procedure Applied to Coking ............... 350
     8.4.1. Maximum Potential ................................. 350
     8.4.2. Reasons for Not Obtaining Maximum Potential ....... 351
     8.4.3. Ways to Eliminate/Reduce Barriers and
            Demonstrate on Small Lab Scale .................... 354
            8.4.3.1. Reduce Secondary Cracking ................ 354
            8.4.3.2. Coking-Separation Synergy ................ 356
            8.4.3.3. Coking on Different Porous Solids ........ 359
     8.4.4. Demonstrate on Pilot Plant Scale .................. 363
     8.4.5. Consider Alternatives ............................. 365
8.5. Conclusions and Future Developments ...................... 366
     References ............................................... 367

Chapter 9 Visbreaking ......................................... 369

9.1. Technology ............................................... 369
9.2. Process Chemistry of Visbreaking ......................... 371
9.3. Limitations to Visbreaker Conversion ..................... 371
9.4. Visbreaking Process Innovations .......................... 372
     9.4.1. Optimizing Visbreaker Conversion for Each Feed .... 372
     9.4.2. Remove Volatile Nonsolvent ........................ 373
     9.4.3. Add Hydrogen Donor Solvent ........................ 373
     9.4.4. Prevent Adhesion of Coke to the Visbreaker
            Surface ........................................... 374
     9.4.5. Couple with Fuels Deasphalting .................... 375
     References ............................................... 375

Chapter 10 Hydroconversion .................................... 377

10.1.Process Objectives ....................................... 377
10.2.Fixed-Bed Resid Hydroprocessing .......................... 377
10.3.Ebullating Bed Hydroconversion ........................... 378
     10.3.1.Limitations to Conversion ......................... 380
     10.3.2.Process Innovations ............................... 380
10.4.Dispersed Catalyst Hydroconversion Processes ............. 381
     10.4.1.Limitations to Conversion ......................... 382
     10.4.2.Process Innovations ............................... 384
     References ............................................... 385

Chapter 11 Future Processing of Petroleum Macromolecules ...... 387

11.1.Pros and Cons of Petroleum Process Improvements .......... 387
11.2.Gasification to Be Emphasized ............................ 388
11.3.Deasphalting of Fuels to Become Common ................... 389
11.4.Yields from Coking Processes to Increase ................. 389
11.5.Dispersed Catalyst to Overtake Ebullating Bed
     Hydroconversion .......................................... 390
11.6.Fouling to Be Nearly Eliminated .......................... 391
11.7.Influence of Other Changing Technologies ................. 391
     11.7.1.Hydrogen and Fuel Cells ........................... 392
     11.7.2.Biofuels .......................................... 392
     11.7.3.Gas Conversion Liquids ............................ 392
     References ............................................... 392

Index ......................................................... 395


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:19:58 2019. Размер: 32,091 bytes.
Посещение N 1687 c 21.07.2009