Nanoscience (Berlin; Heidelberg, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNanoscience: nanotechnologies and nanophysics / ed. by Dupas C., Houdy P., Lahmani M. - Berlin; Heidelberg: Springer, 2007. - xxxiii, 823 p.: ill. - ISBN 3-540-28616-0
 

Оглавление / Contents
 
Part I Tools for Nanoscience

1. Lithography and Etching Processes
      D. Mailly, С. Vieu ........................................ 3

1.1. Definitions and General Considerations ..................... 3
1.2. Photoresists ............................................... 3
     1.2.1. Example of Processing with a Polymer Resist ......... 4
     1.2.2. Sensitivity and Contrast ............................ 5
     1.2.3. Example of a Positive Resist ........................ 7
     1.2.4. Transfer Stage ...................................... 8
1.3. Subtractive Pattern Transfer ............................... 9
     1.3.1. Wet Etching ......................................... 9
     1.3.2. Dry Etching ........................................ 11
     1.3.3. Reactive Ion Etching ............................... 13
1.4. Additive Pattern Transfer ................................. 15
     1.4.1. Lift-Off ........................................... 15
     1.4.2. Electrolytic Growth ................................ 16
1.5. Lithography ............................................... 19
     1.5.1. Overview of Lithographic Methods ................... 19
     1.5.2. Proximity and Contact Photolithography ............. 20
     1.5.3. Projection Photolithography ........................ 23
     1.5.4. X-Ray Photolithography ............................. 26
     1.5.5. Extreme UV Lithography ............................. 28
     1.5.6. Electron Projection Lithography .................... 28
     1.5.7. Ion Projection Lithography ......................... 29
     1.5.8. Electron Beam Lithography .......................... 30
     1.5.9. Focussed Ion Beam (FIB) Lithography ................ 35
     1.5.10.Conclusion ......................................... 39
     References ................................................ 40

2. Growth of Organised Nano-Objects on Prepatterned Surfaces
      M. Hanbiicken, J. Eymery, S. Rousset ..................... 41

2.1. Physical Phenomena in Substrate Prepatterning
     and Periodic Growth of Adsorbates ......................... 42
     2.1.1. Surface Crystallography: Surface Energy and 
            Surface Stress ..................................... 42
     2.1.2. Self-Organised Surfaces: Discontinuities
            in the Surface Stress .............................. 47
     2.1.3. 3D Growth: Energy Criterion and Competition
            Between Bulk Elastic Energy and Surface Energy ..... 48
     2.1.4. Role of the Chemical Potential as Driving Force
            Behind Adsorbate Growth. Curvature Effect
            and Elastic Stresses ............................... 52
2.2. Physical and Chemical Methods for Producing
     Nano-Objects .............................................. 53
2.3. Growth of Nano-Objects on a Naturally Prepatterned
     Surface Using Its Intrinsic Properties .................... 56
     2.3.1. Growth of Self-Organised Surfaces .................. 56
     2.3.2. Uses for Growth on Vicinal Surfaces ................ 57
2.4. Growth of Quantum Dots on a Prepatterned Surface
     by Imposing a Controlled Artificial Pattern ............... 58
2.5. Growth of Nano-Objects on a Prepatterned Vicinal Surface
     by Combining Natural and Artificial Patterning ............ 61
     2.5.1. Prepatterning the Si(lll) Vicinal Surface .......... 61
     2.5.2. Growth of Gold Nano-Objects on Prepatterned
            Si(lll) ............................................ 63
2.6. Conclusion ................................................ 64
     References ................................................ 65

3. Scanning Tunneling Microscopy
      D. Stievenard ............................................ 69

3.1. Introduction .............................................. 69
     3.1.1. General Principles ................................. 69
     3.1.2. General Setup ...................................... 70
     3.1.3. Tip Preparation .................................... 71
3.2. Tunnel Current ............................................ 72
     3.2.1. Tunnel Effect Between Tip and Sample ............... 72
     3.2.2. Tunnel Current: Tersoff-Hamann Theory .............. 73
     3.2.3. Extending the Tersoff-Hamann Theory ................ 73
     3.2.4. Resolution ......................................... 74
     3.2.5. Contrast ........................................... 75
     3.2.6. Measuring the Barrier Height ....................... 76
     3.2.7. Examples ........................................... 77
3.3. STM Spectroscopy .......................................... 80
     3.3.1. Elastic Current .................................... 80
     3.3.2. Measuring the Band Gaps of III-V Semiconductors .... 82
     3.3.3. Spectroscopy of Individual Quantum Dots ............ 82
     3.3.4. Inelastic Tunnel Current ........................... 84
3.4. Tip-Sample Interaction .................................... 85
     3.4.1. Manipulation Modes ................................. 85
     3.4.2. Local Chemistry .................................... 87
3.5. Conclusion ................................................ 88
     References ................................................ 89

4. Atomic Force Microscopy
      C. Fretigny .............................................. 91

4.1. The Device ................................................ 91
4.2. The Various Imaging Modes ................................. 92
4.3. Image Resolution .......................................... 95
4.4. Contact Mode: Topography, Elasticity and Adhesion
     Imaging ................................................... 98
     4.4.1. Friction Mode ..................................... 100
4.5. Resonant Modes ........................................... 101
     4.5.1. General Principles ................................ 101
     4.5.2. Linear Resonant Mode .............................. 102
     4.5.3. Nonlinear Resonant (Tapping) Mode ................. 103
4.6. Force Measurements ....................................... 107
     4.6.1. Non-Contact Measurements .......................... 108
     4.6.2. Elasticity and Adhesion Measurements on
            a Single Molecule ................................. 108
4.7. Magnetic and Electrical Measurements ..................... 109
     4.7.1. Magnetic Measurements ............................. 109
     4.7.2. Electrical Measurements ........................... 109
4.8. Measuring Mechanical Properties .......................... 112
     4.8.1. Nanoindentation ................................... 112
     4.8.2. Measuring Contact Stiffness ....................... 112
     4.8.3. Contact Resonance Frequency ....................... 113
     4.8.4. Friction Forces ................................... 114
4.9. Applications in Nanotechnology ........................... 115
4.10.Conclusion ............................................... 118
     References ............................................... 118

5. Near-Field Optics: From Experiment to Theory
      C. Boccara, R. Carminati ................................ 121

5.1. Basic Ideas and the Nature of the Problem ................ 121
     5.1.1. Resolution, Near Field and Far Field .............. 121
     5.1.2. Brief History of Near-Field Methods ............... 122
     5.1.3. Near-Field Optical Microscopy: For What
            Purpose? .......................................... 123
5.2. Photon Scanning Tunneling Microscope (PSTM) .............. 123
     5.2.1. Frustration of Evanescent Fields .................. 124
     5.2.2. PSTM Probe in an Evanescent Field: Scattering
            Model ............................................. 124
     5.2.3. Applications of PSTM .............................. 126
5.3. Apertureless Near-Field Microscope ....................... 126
     5.3.1. Nano-Antenna Radiating to the Far Field ........... 127
     5.3.2. Source of Contrast: Scattering Sphere Model ....... 127
     5.3.3. Sharp-Point Effect. Tip Resolution and
            Efficiency ........................................ 129
     5.3.4. Field Enhancement Near a Metal Tip ................ 129
     5.3.5. Apertureless SNOM: Typical SNOM Setup ............. 131
5.4. Aperture SNOM ............................................ 133
     5.4.1. Metal-Coated Fibre ................................ 133
     5.4.2. Energy Transmission in a Tapered Metal-Coated
            Fibre ............................................. 134
     5.4.3. Applications of Aperture SNOM ..................... 136
5.5. Plane Wave Expansion. Diffraction Limit .................. 137
     5.5.1. Propagation of a Beam in Vacuum ................... 138
     5.5.2. Uncertainty Relations and Diffraction ............. 140
     5.5.3. Diffraction Limit ................................. 140
5.6. Beyond the Diffraction Limit: Near Field and
     Evanescent Waves ......................................... 142
     5.6.1. Evanescent Waves. Length Scales ................... 142
     5.6.2. Uncertainty Relations Revisited ................... 143
5.7. Electromagnetic Radiation. Near Field and Far Field ...... 143
     5.7.1. Radiation from an Elementary Source 
            (Electric Dipole) ................................. 143
     5.7.2. Far-Field Radiation. Diffraction Limit
            Revisited ......................................... 144
     5.7.3. Near-Field Radiation. Quasi-Static Limit .......... 145
     5.7.4. Towards a Model ................................... 146
5.8. Dipole Emission Near a Nanostructure ..................... 146
     5.8.1. Radiative Damping of Dipole Emission .............. 147
     5.8.2. Free-Space Dipole Emission ........................ 148
     5.8.3. Dipole Emission Near an Object .................... 149
     5.8.4. Link with the Quantum Approach .................... 150
     5.8.5. A Simple Example: Dipole Emission Near a Plane
            Mirror ............................................ 151
     5.8.6. Dipole Emission Near a Nanoparticle.
            Radiative and Non-Radiative Coupling .............. 152
     References ............................................... 155

6. Emerging Nanolithographic Methods
     Y. Chen, A. Pepin ........................................ 157

6.1. Introduction ............................................. 157
6.2. Nanoimprint Lithography .................................. 158
6.3. Applications of Nanoimprint Lithography .................. 162
     6.3.1. Microelectronics .................................. 162
     6.3.2. Nanomagnetism ..................................... 163
     6.3.3. Nano-Optics ....................................... 164
     6.3.4. Chemistry and Biology ............................. 165
6.4. UV Nanoimprint Lithography (UV-NIL) ...................... 166
6.5. Nanoembossing ............................................ 167
6.6. Soft Lithography ......................................... 169
6.7. Near-Field Lithography ................................... 172
6.8. Conclusion ............................................... 174
     References ............................................... 174

Part II Nanoscale Objects

7. Clusters and Colloids
      A. Perez, P. Melinon, J. Lerme, P.-F. Brevet ............ 179

7.1. Equilibrium Shape ........................................ 180
     7.1.1. Liquid-Drop Model ................................. 180
     7.1.2. Wulff Polyhedron .................................. 182
     7.1.3. Beyond the Wulff Polyhedron ....................... 183
     7.1.4. Van der Waals Binding ............................. 189
     7.1.5. Covalent Binding .................................. 190
     7.1.6. Ionic Binding ..................................... 192
7.2. Characteristic Quantity: Radius .......................... 193
     7.2.1. Thermodynamic Quantities: Melting Temperature ..... 193
     7.2.2. Electronic Quantities ............................. 196
7.3. Characteristic Quantity: Fluctuations .................... 200
     7.3.1. Melting Temperature ............................... 200
     7.3.2. Kubo Model ........................................ 202
7.4. Specific Quantum Effects in Nanoscale Systems
     and Collective Excitations ............................... 206
     7.4.1. Electronic Shell Structure ........................ 207
     7.4.2. Electronic Supershells ............................ 217
     7.4.3. Optical Properties. Collective Excitations ........ 225
7.5. Preparation Methods ...................................... 241
     7.5.1. Gas Phase Physical Methods ........................ 241
     7.5.2. Liquid Phase Chemical Methods ..................... 246
7.6. Cluster or Colloid Assemblies ............................ 252
     7.6.1. Assemblies of Metallic Clusters ................... 253
     7.6.2. Deposition Techniques for Clusters and Colloids ... 254
     7.6.3. Characteristic Mechanisms for the Formation
            of Nanostructures by Cluster Assembly ............. 256
     7.6.4. Examples of New Nanostructured Systems
            Prepared by Cluster Deposition .................... 260
7.7. Conclusion and Prospects ................................. 266
     References ............................................... 277

8. Fullerenes and Carbon Nanotubes
     J.-P. Bourgoin, A. Loiseau, J.-F. Nierengarten ........... 279

8.1. Introduction ............................................. 279
8.2. Nanotubes and the Crystalline Forms of Carbon ............ 280
     8.2.1. Diamond and Graphite .............................. 280
     8.2.2. Discovery of Fullerenes ........................... 281
     8.2.3. Discovery of Carbon Nanotubes ..................... 281
8.3. Fullerenes ............................................... 282
     8.3.1. nStructure of Fullerenes .......................... 282
     8.3.2. Production of Fullerenes .......................... 284
     8.3.3. Physicochemical Properties of
            Buckminsterfullerene .............................. 285
8.4. Carbon Nanotubes ......................................... 289
     8.4.1. Crystal Structure of Nanotubes .................... 289
     8.4.2. Electronic Structure of Carbon Nanotubes .......... 292
     8.4.3. Self-Organisation of Nanotubes .................... 300
     8.4.4. Chemical Varieties of Nanotubes ................... 301
     8.4.5. Synthesis of Nanotubes ............................ 302
     8.4.6. Growth Mechanism for Carbon Nanotubes ............. 305
     8.4.7. Observation of Nanotubes .......................... 308
     8.4.8. Properties of Nanotubes ........................... 311
     8.4.9. From Science to Applications ...................... 313
8.5. Conclusion ............................................... 318
     References ............................................... 321

9. Nanowires
      J.-C. Labrune, F. Palmino ............................... 325

9.1. Fabrication of Nanowires ................................. 326
9.2. The Тор-Down Approach .................................... 327
     9.2.1. Soft Lithography .................................. 327
     9.2.2. Near-Field Lithography ............................ 328
9.3. The Bottom-Up Approach ................................... 332
     9.3.1. Self-Assembly on a Surface ........................ 332
     9.3.2. VLS Synthesis ..................................... 334
     9.3.3. Use of Porous Matrices ............................ 335
9.4. Electrical Conduction in Nanowires ....................... 335
     9.4.1. Electrical Contacts ............................... 336
     9.4.2. Incoherent Transport .............................. 342
     9.4.3. Atomic Chains and Molecules ....................... 342
9.5. Conclusion ............................................... 344
     References ............................................... 344

10.Nano-Objects
      J.-F. Nierengarten, J.-L. Gallani, N. Solladie .......... 349

10.1.Dendrimers ............................................... 349
     10.1.1.Divergent Synthesis ............................... 350
     10.1.2.Convergent Synthesis .............................. 352
10.2.Supramolecules ........................................... 353
     10.2.1.Self-Assembly by 3D Template Effect
            Induced by a Metal Cation ......................... 354
     10.2.2.Self-Assembly by Hydrogen Bonding ................. 359
     10.2.3.Self-Assembly by Hydrophobic Interactions,
            π-Interactions and Charge Transfer
            Interactions ...................................... 363
     10.2.4.Molecular Machines ................................ 366
10.3.Polymolecular Assemblies ................................. 368
     10.3.1.Self-Assembly in the Bulk ......................... 369
     10.3.2.Self-Assembly on Surfaces ......................... 372
     References ............................................... 378

Part III Properties and Applications

11.Ultimate Electronics
      S. Galdin-Retailleau, A. Bournel, P. Dollfus ............ 383

11.1.CMOS Technology .......................................... 386
11.2.MOSFET Scaling ........................................... 392
     11.2.1.Basic Principles .................................. 392
     11.2.2.Short Channel Effects ............................. 392
     11.2.3.Scaling Rules ..................................... 393
     11.2.4.State of the Art: ITRS Roadmap .................... 395
     11.2.5.Interconnects ..................................... 398
11.3.NanoMOS Devices .......................................... 400
     11.3.1.Specific Problems ................................. 400
     11.3.2.Alternatives to Conventional MOSFET Devices ....... 408
11.4.Conclusion ............................................... 412
     References ............................................... 413

12.Alternative Electronics
      J.-N. Patillon, D. Mailly ............................... 417

12.1.Characteristic Length Scales for Nanoscopic Components ... 418
12.2.Single-Electron Devices (SED) ............................ 419
     12.2.1.Basic Ideas ....................................... 419
     12.2.2.Transport by Coulomb Blockade ..................... 420
     12.2.3.Double Tunnel Junction ............................ 425
     12.2.4.Single-Electron Transistor ........................ 427
12.3.Quantum Interference in Nanostructures ................... 428
     12.3.1.Introduction ...................................... 428
     12.3.2.Conductance and Transmission.The Landauer
            Formula ........................................... 430
     12.3.3.Calculating the Correction ........................ 433
     12.3.4.Effect of Magnetic Fields ......................... 434
     12.3.5.Universal Conductance Fluctuations ................ 435
     12.3.6.Cutoffs ........................................... 437
12.4.An Example of Interference: Aharonov-Bohm Effect ......... 437
12.5.Superconducting Nanoelectronics: RSFQ Logic .............. 440
     12.5.1.Introduction ...................................... 440
     12.5.2.Superconducting Logic Components .................. 440
     12.5.3.Structure and Performance of RSFQ Components ...... 442
     References ............................................... 446

13.Molecular Electronics
      J.P. Bourgoin, D. Vuillaume, M. Goffman, A. Filoramo .... 447

13.1.Basic Building Blocks: Choice, Wealth, Complexity ........ 448
13.2.A Little History ......................................... 449
13.3.Molecular Components ..................................... 450
     13.3.1.Electrodes and Contacts ........................... 450
     13.3.2.Relationship Between Molecular Structure and
            Properties ........................................ 456
     13.3.3.Functions ......................................... 469
13.4.Components Based on Nanotubes ............................ 479
     13.4.1.Field-Effect Transistors .......................... 479
     13.4.2.Single-Electron Transistors (SET) ................. 486
13.5.From Components to Circuits .............................. 490
     13.5.1.Fabrication Techniques ............................ 490
     13.5.2.Circuit Architecture .............................. 497
13.6.Conclusion ............................................... 498
     References ............................................... 499

14.Nanomagnetism and Spin Electronics
      C. Chappert, A. Barthelemy .............................. 503

14.1.Nanomagnetism ............................................ 504
     14.1.1.Vacuum Magnetostatics ............................. 504
     14.1.2.Magnetism in Matter: Fundamental Relations ........ 505
     14.1.3.Magnetism in Matter: Continuum Approximation ...... 511
     14.1.4.Novel Magnetic Effects on the Nanoscale ........... 525
     14.1.5.Magnetisation Dynamics in Magnetic
            Nanostructures .................................... 540
14.2.Spin Electronics ......................................... 552
     14.2.1.Description ....................................... 552
     14.2.2.Origins and Mechanisms of Spin Electronics ........ 559
     14.2.3.Magnetoresistance of Tunnel Junctions ............. 568
     References ............................................... 578

15.Information Storage
      D. Fraboulet, Y. Samson ................................. 583

15.1.Mass Memories ............................................ 583
     15.1.1.Mass Memories: The Hard Disk ...................... 585
     15.1.2.Beyond the Hard Disk.Local Probe Techniques ....... 593
15.2.Matrix Memories .......................................... 595
     15.2.1.General Principles of Matrix Storage .............. 595
     15.2.2.Difficulties in Reducing Memory Cells to
            Nanoscale Sizes ................................... 599
     15.2.3.Matrix Memory Technology in Current Use ........... 600
     15.2.4.Memory Concepts Under Development ................. 606
15.3.Conclusion ............................................... 614
     References ............................................... 618

16.Optronics
      J.-L. Pautrat, J.-M. Gerard, E. Bustarret,
      D. Cassagne, E. Hadji, C. Seassal ....................... 619

16.1.Surface Plasmons and Nanoscale Optics .................... 619
     16.1.1.Introduction ...................................... 619
     16.1.2.What Is a Plasmon? ................................ 620
     16.1.3.Dispersion Relations, Coupling with Light,
            and Applications .................................. 622
     16.1.4.Optical Transmission Through Subwavelength
            Apertures ......................................... 627
     16.1.5.Metal Nanoparticles ............................... 629
     16.1.6.How Far Can Plasmons Take Us? ..................... 633
16.2.Semiconductor Quantum Dots ............................... 634
     16.2.1.Semiconductor Lasers: From Quantum Wells
            to Quantum Dots ................................... 634
     16.2.2.Single Quantum Dots ............................... 640
16.3.Photonic Crystals and Microcavities ...................... 646
     16.3.1.Introduction ...................................... 646
     16.3.2.Periodic Structures ............................... 646
     16.3.3.Structures Without Defects. Exploiting the
            Allowed Bands in Photonic Crystals ................ 653
     16.3.4.Structures with Defects ........................... 656
     16.3.5.Conclusion and Prospects .......................... 661
     References ............................................... 662

17.Nanophotonics for Biology
      J.Zyss, S.Brasselet ..................................... 665

17.2.Molecules, Supramolecular Assemblies, and
     Nanoparticles ............................................ 686
     17.2.1.Coupling Between Nanoparticles and Biomolecules ... 686
     17.2.2.Luminescent Nanostructures Based on
            Semiconductors and Metals ......................... 695
     17.2.3.Molecular Engineering for Biophotonics ............ 698
17.3.Nanophotonic Instrumentation for Biology ................. 707
     17.3.1.Optical Detection of Single Molecules by
            Fluorescence ...................................... 707
     17.3.2.Multiphoton and Nonlinear Microscopy .............. 731
     17.3.3.Mechanical Properties of Single Biomolecules ...... 737
17.4.Conclusion ............................................... 743
     References ............................................... 746

18.Numerical Simulation
      X. Blase, С. Delerue .................................... 749

18.1.Structural Properties .................................... 750
     18.1.1.Interatomic Potentials and Forces ................. 750
     18.1.2.Potential Energy Surface .......................... 752
     18.1.3.Classical Molecular Dynamics ...................... 753
     18.1.4.Monte Carlo Methods ............................... 755
18.2.Electron Properties ...................................... 757
     18.2.1.Basic Results from Quantum Mechanics .............. 757
     18.2.2.Semi-Empirical Approaches to Electron Structure ... 759
     18.2.3.Ab Initio Methods ................................. 766
     18.2.4.Ab Initio Calculation of Interatomic Forces ....... 771
     18.2.5.Using Electron Wave Functions and Eigenvalues ..... 773
18.3.Conclusion ............................................... 773
     References ............................................... 774

19.Computer Architectures for Nanotechnology: Towards
   Nanocomputing
      C. Gamrat ............................................... 777

19.1.Introduction ............................................. 777
19.2.Computer Architecture and Basic Functions ................ 779
     19.2.1.Typical Architecture of a Computer ................ 779
     19.2.2.Memory ............................................ 780
     19.2.3.Interconnects ..................................... 782
     19.2.4.Operators ......................................... 782
     19.2.5.Technological Considerations ...................... 783
     19.2.6.Nanomemories, Nano-operators, Nanoconnections ..... 785
19.3.Some Ideas for a New Architecture ........................ 786
     19.3.1.Calculating with Memory Alone ..................... 786
     19.3.2.Reconfigurable Computer Architectures ............. 788
     19.3.3.Cellular Automata ................................. 789
     19.3.4.Neural Networks ................................... 791
19.4.Computer Environment ..................................... 794
     19.4.1.Information Coding ................................ 794
     19.4.2.Defect Tolerance .................................. 794
19.5.Prospects ................................................ 798
     References ............................................... 799

Index ......................................................... 801


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:19:42 2019. Размер: 31,228 bytes.
Посещение N 2094 c 31.03.2009