Nanotecgnology; 3 (Weinheim, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNanotecgnology. Vol.3: Information technology, I / ed. by Waser R. - Weinheim: Wiley-VCH, 2008. - xxii, 541 p.: ill. - ISBN 978-3-527-31738-7
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ......................................................... X
List of Contributors .......................................... XIX
I.  Basic Principles and Theory ................................. 1

1.  Phase-Coherent Transport .................................... 3
       Thomas Schäpers

    1.1.  Introduction .......................................... 3
    1.2.  Characteristic Length Scales .......................... 4
          1.2.1.  Elastic Mean Free Path ........................ 4
          1.2.2.  Inelastic Mean Free Path ...................... 5
          1.2.3.  Phase-Coherence Length ........................ 5
          1.2.4.  Transport Regimes ............................. 6
    1.3.  Ballistic Transport ................................... 7
          1.3.1.  Landauer-Buttiker Formalism ................... 7
          1.3.2.  Split-Gate Point Contact ...................... 9
    1.4.  Weak Localization .................................... 13
          1.4.1.  Basic Principles ............................. 14
          1.4.2.  Weak Localization in One and Two Dimensions .. 15
          1.4.3.  Weak Localization in a Magnetic Field ........ 16
    1.5.  Spin-Effects: Weak Antilocalization .................. 19
    1.6.  Al'tshuler-Aronov-Spivak Oscillations ................ 21
    1.7.  The Aharonov-Bohm Effect ............................. 23
    1.8.  Universal Conductance Fluctuations ................... 27
          1.8.1.  Basic Principles ............................. 27
          1.8.2.  Detailed Analysis ............................ 29
          1.8.3.  Fluctuations in Long Wires ................... 31
          1.8.4.  Energy and Temperature Dependence ............ 32
    1.9.  Concluding Remarks ................................... 33
    References ................................................. 34

2.  Charge Transport and Single-Electron Effects in
    Nanoscale Systems .......................................... 37
       Joseph M.Thijssen,; Herre S.J. van der Zant

    2.1.  Introduction: Three-Terminal Devices and
          Quantization ......................................... 37
    2.2.  Description of Transport ............................. 40
          2.2.1.  Structure of Nanoscale Devices ............... 40
                  2.2.1.1.  The Reservoirs ..................... 40
                  2.2.1.2.  The Leads .......................... 41
                  2.2.1.3.  The Island ......................... 41
          2.2.2.  Transport .................................... 42
                  2.2.2.1.  Coherent-Incoherent Transport ...... 43
                  2.2.2.2.  Elastic-Inelastic Transport ........ 44
                  2.2.2.3.  Resonant-Off-Resonant Transport .... 44
                  2.2.2.4.  First-Order versus Higher-Order
                            Processes .......................... 44
                  2.2.2.5.  Direct Tunneling ................... 45
    2.3.  Resonant Transport ................................... 45
    2.4.  Constant Interaction Model ........................... 49
    2.5.  Charge Transport Measurements as a Spectroscopic
          Tool ................................................. 53
          2.5.1.  Electronic Excitations ....................... 55
          2.5.2.  Including Vibrational States ................. 57
    2.6.  Second-Order Processes ............................... 59
          2.6.1.  The Kondo Effect in a Quantum Dot with
                  an Unpaired Electron ......................... 60
          2.6.2.  Inelastic Co-Tunneling ....................... 61
                  References ................................... 63

3.  Spin Injection-Extraction Processes in Metallic and
    Semiconductor Heterostructures ............................. 65
       Alexander M.Bratkovsky

    3.1.  Introduction ......................................... 65
    3.2.  Main Spintronic Effects and Devices .................. 67
          3.2.1.  TMR .......................................... 67
          3.2.2.  GMR .......................................... 68
          3.2.3.  (Pseudo)Spin-Torque Domain Wall Switching
                  in Nanomagnets ............................... 70
    3.3.  Spin-Orbital Coupling and Electron Interference
          Semiconductor Devices ................................ 72
          3.3.1.  Spin-Hall Effect (SHE) and
                  Magnetoresistance due to Edge Spin
                  Accumulation ................................. 74
          3.3.2.  Interacting Spin Logic Circuits .............. 76
    3.4.  Tunnel Magnetoresistance ............................. 77
          3.4.1.  Impurity Suppression of TMR .................. 80
          3.4.2.  Negative Resonant TMR? ....................... 81
          3.4.3.  Tunneling in Half-Metallic Ferromagnetic
                  Junctions .................................... 82
          3.4.4.  Surface States Assisted TMR .................. 84
          3.4.5.  Inelastic Effects in TMR ..................... 84
    3.5.  Spin Injection/Extraction into (from)
          Semiconductors ....................................... 86
          3.5.1.  Spin Tunneling through Modified
                  (Delta-Doped) Schottky Barrier ............... 89
          3.5.2.  Conditions for Efficient Spin Injection
                  and Extraction ............................... 95
          3.5.3.  High-Frequency Spin-Valve Effect ............. 97
          3.5.4.  Spin-Injection Devices ....................... 99
          3.5.5.  Spin Source of Polarized Radiation .......... 101
    3.6.  Conclusions ......................................... 104
          References .......................................... 104

4.  Physics of Computational Elements ......................... 109
       Victor V.Zhirnov and Ralph K.Cavin

    4.1.  The Binary Switch as a Basic Information-
          Processing Element .................................. 209
          4.1.1.  Information and Information Processing ...... 109
          4.1.2.  Properties of an Abstract Binary
                  Information-Processing System ............... 110
    4.2.  Binary State Variables .............................. 111
          4.2.1.  Essential Operations of an Abstract
                  Binary Switch ............................... 111
          4.2.2.  The Use of Particles to Represent Binary
                  Information ................................. 111
    4.3.  Energy Barriers in Binary Switches .................. 113
          4.3.1.  Operation of Binary Switches in the
                  Presence of Thermal Noise ................... 113
          4.3.2.  Quantum Errors .............................. 114
          4.3.3.  A Combined Effect of Classical and
                  Quantum Errors .............................. 116
    4.4.  Energy Barrier Framework for the Operating
          Limits of Binary Switches ........................... 116
          4.4.1.  Limits on Energy ............................ 116
          4.4.2.  Limits on Size .............................. 117
          4.4.3.  Limits on Speed ............................. 118
          4.4.4.  Energy Dissipation by Computation ........... 119
    4.5.  Physics of Energy Barriers .......................... 119
          4.5.1.  Energy Barrier in Charge-Based Binary
                  Switch ...................................... 120
          4.5.2.  Energy Barrier in Spin-Based Binary
                  Switch ...................................... 124
          4.5.3.  Energy Barriers for Multiple-Spin Systems ... 128
    4.5.  A.  Energy Barriers for the Optical Binary Switch ... 130
    4.6.  Conclusions ......................................... 131
          References .......................................... 132

II.  Nanofabrication Methods .................................. 135

5.  Charged-Particle Lithography .............................. 137
       Lothar Berger, Johannes Kretz, Dirk Beyer, and
       Anatol Schwersenz

    5.1.  Survey .............................................. 137
    5.2.  Electron Beam Lithography ........................... 141
          5.2.1.  Introduction ................................ 141
                  5.2.1.1.  Electron Sources .................. 141
                  5.2.1.2.  Electron Optics ................... 142
                  5.2.1.3.  Gaussian Beam Lithography ......... 147
                  5.2.1.4.  Shaped Beam Lithography ........... 148
                  5.2.1.5.  Patterning ........................ 151
          5.2.2.  Resists ..................................... 153
          5.2.3.  Applications ................................ 158

                  5.2.3.1.  Photolithography Masks ............ 158
                  5.2.3.2.  Direct-Write Lithography .......... 162
                  5.2.3.3.  Maskless Lithography .............. 164
                  5.2.3.4.  Imprint Templates ................. 170
    5.3.  Ion Beam Lithography ................................ 172
          5.3.1.  Introduction ................................ 172
                  5.3.1.1.  Ion Sources ....................... 173
                  5.3.1.2.  Ion Optics ........................ 173
                  5.3.1.3.  Patterning ........................ 173
          5.3.2.  Applications ................................ 173
                  5.3.2.1.  Direct-Structuring Lithography .... 174
                  5.3.2.2.  Imprint Templates ................. 176
    5.4.  Conclusions ......................................... 176
    References ................................................ 177

6.  Extreme Ultraviolet Lithography ........................... 181
       Klaus Bergmann, Larissa Juschkin, and Reinhart
       Poprawe

    6.1.  Introduction ........................................ 181
          6.1.1.  General Aspects ............................. 181
          6.1.2.  System Architecture ......................... 182
    6.2.  The Components of EUV Lithography ................... 185
          6.2.1.  Light Sources ............................... 185
                  6.2.1.1.  Plasmas as EUV Radiators .......... 186
                  6.2.1.2.  Laser-Induced Plasmas ............. 187
                  6.2.1.3.  Gas Discharge Plasmas ............. 188
                  6.2.1.4.  Source Concepts and Current
                            Status ............................ 189
          6.2.2.  Collectors and Debris Mitigation ............ 191
          6.2.3.  Multilayer Optics ........................... 194
          6.2.4.  Masks ....................................... 198
          6.2.5.  Resist ...................................... 199
    6.3.  Outlook ............................................. 203
    References ................................................ 204

7.  Non-Optical Lithography ................................... 209
       Clivia M.Sotomayor Torres andjouni Ahopelto

    7.1.  Introduction ........................................ 209
    7.2.  Nanoimprint Lithography ............................. 210
          7.2.1.  The Nanoimprint Process ..................... 210
          7.2.2.  Polymers for Nanoimprint Lithography ........ 211
          7.2.3.  Variations of NIL Methods ................... 215
                  7.2.3.1.  Single-Step NIL ................... 215
                  7.2.3.2.  Step-and-Stamp Imprint
                            Lithography ....................... 216
                  7.2.3.3.  Step-and-Flash Imprint
                            Lithography ....................... 216
                  7.2.3.4.  Roll-to-Roll Printing ............. 217
          7.2.4.  Stamps ...................................... 217
          7.2.5.  Residual Layer and Critical Dimensions ...... 222
          7.2.6.  Towards 3-D Nanoimprinting .................. 227
          7.2.7.  The State of the Art ........................ 230
    7.3.  Discussion .......................................... 230
    7.4.  Conclusions ......................................... 234
    References ................................................ 235

8.  Nanomanipulation with the Atomic Force Microscope ......... 239
       Ari Requicha

    8.1.  Introduction ........................................ 239
    8.2.  Principles of Operation of the AFM .................. 242
          8.2.1.  The Instrument and its Modes of Operation ... 242
          8.2.2.  Spatial Uncertainties ....................... 247
    8.3.  Nanomanipulation: Principles and Approaches ......... 250
          8.3.1.  LMR Nanomanipulation by Pushing ............. 250
          8.3.2.  Other Approaches ............................ 253
          8.3.3.  Manipulation and Assembly of
                  Nanostructures .............................. 256
    8.4.  Manipulation Systems ................................ 260
          8.4.1.  Interactive Systems ......................... 260
          8.4.2.  Automated Systems ........................... 261
    8.5.  Conclusion and Outlook .............................. 265
    References ................................................ 267

9.  Harnessing Molecular Biology to the Self-Assembly of
    Molecular-Scale Electronics ............................... 275
       Uri Sivan

    9.1.  Introduction ........................................ 275
    9.2.  DNA-Templated Electronics ........................... 278
          9.2.1.  Scaffolds and Metallization ................. 278
          9.2.2.  Sequence-Specific Molecular Lithography ..... 281
          9.2.3.  Self-Assembly of a DNA-Templated Carbon
                  Nanotube Field-Effect Transistor ............ 284
    9.3.  Recognition of Electronic Surfaces by Antibodies .... 288
    9.4.  Molecular Shift-Registers and their Use as
          Autonomous DNA Synthesizers [11] .................... 293
          9.4.1.  Molecular Shift-Registers ................... 293
          9.4.2.  Error Suppression and Analogy Between
                  Synthesis and Communication Theory .......... 298
          9.5.  Future Perspectives ........................... 300
    References ................................................ 301

10.  Formation of Nanostructures by Self-Assembly ............. 305
        Melanie Homberger, Silvia Karthauser, Ulrich Simon,
        and Bert Voigtlander

    10.1. Introduction ........................................ 305
    10.2. Self-Assembly by Epitaxial Growth ................... 306
          10.2.1. Physical Principles of Self-Organized
                  Epitaxial Growth ............................ 306
                  10.2.1.1. Epitaxial Growth Techniques ....... 306
                  10.2.1.2. Kinetically Limited Growth in
                            Homoepitaxy ....................... 307
                  10.2.1.3. Thermodynamically Stable
                            Nanostructures .................... 309
                  10.2.1.4. Nanostructure Formation in
                            Heteroepitaxial Growth ............ 311
          10.2.2. Semiconductor Nanoislands and Nanowires ..... 313
                  10.2.2.1. Stranski-Krastanov Growth of
                            Nanoislands ....................... 313
                  10.2.2.2. Lateral Positioning of
                            Nanoislands by Growth on
                            Templates ......................... 314
                  10.2.2.3. Silicide Nanowires ................ 315
                  10.2.2.4. Monolayer-Thick Wires at Step
                            Edges ............................. 315
          10.2.3. Hybrid Methods: The Combination of
                  Lithography and Self-Organized Growth ....... 317
          10.2.4. Inorganic Nanostructures as Templates
                  for Molecular Layers ........................ 318
    10.3. Molecular Self-Assembly ............................. 320
          10.3.1. Attaching Molecules to Surfaces ............. 321
                  10.3.1.1. Preparation of Substrates ......... 322
                  10.3.1.2. Preparation of Self-Assembled
                            Monolayers ........................ 322
                  10.3.1.3. Preparation of Mixed Self-
                            Assembled Monolayers .............. 323
          10.3.2. Structure of Self-Assembled Monolayers ...... 324
                  10.3.2.1. Organothiols on Metals ............ 325
                  10.3.2.2. Carboxylates on Copper ............ 326
          10.3.3. Supramolecular Nanostructures 327
          10.3.4. Applications of Self-Assembled Monolayers ... 330
                  10.3.4.1. Surface Modifications ............. 330
                  10.3.4.2. Adsorption of Nanocomponents ...... 330
                  10.3.4.3. Steps to Nanoelectronic Devices ... 331
    10.4. Preparation and Self-Assembly of Metal
          Nanoparticles ....................................... 334
          10.4.1. Preparation of Metal Nanoparticles .......... 334
          10.4.2. Assembly of Metal Nanoparticles ............. 337
                  10.4.2.1. Three-Dimensional Assemblies ...... 337
                  10.4.2.2. Two-Dimensional Assemblies: The
                            Formation of Monolayers ........... 339
                  10.4.2.3. One-Dimensional Assemblies ........ 341
    10.5. Conclusions ......................................... 344
    References ................................................ 344

III. High-Density Memories .................................... 349

11. Flash-Type Memories ....................................... 351
       Thomas Mikolajick

    11.1. Introduction ........................................ 351
    11.2. Basics of Flash Memories ............................ 353
          11.2.1. Programming and Erase Mechanisms ............ 353
                  11.2.1.1. Hot Carrier Injection ............. 354
                  11.2.1.2. Fowler-NordheimTunneling .......... 357
                  11.2.1.3. Array Architecture ................ 358
    11.3. Floating-Gate Flash Concepts ........................ 359
          11.3.1. The Floating-Gate Transistor ................ 359
          11.3.2. NOR Flash ................................... 361
          11.3.3. NAND Flash .................................. 363
          11.3.4. Reliability Aspects of Floating-Gate
                  Flash ....................................... 365
          11.3.5. Scaling of Floating-Gate Flash .............. 366
    11.4. Charge-Trapping Flash ............................... 370
          11.4.1. SONOS ....................................... 370
          11.4.2. Multi-Bit Charge Trapping ................... 372
          11.4.3. Scaling of Charge-Trapping Flash ............ 375
    11.5. Nanocrystal Flash Memories .......................... 376
    11.6. Summary and Outlook ................................. 378
    References ................................................ 379

12. Dynamic Random Access Memory .............................. 383
       Fumio Horiguchi

    12.1. DRAM Basic Operation ................................ 383
    12.2. Advanced DRAM Technology Requirements ............... 384
    12.3. Capacitor Technologies .............................. 385
    12.4. Array Transistor Technologies ....................... 389
    12.5. Capacitorless DRAM (Floating Body Cell) ............. 393
    12.6. Summary 395 References .............................. 395

13. Ferroelectric Random Access Memory ........................ 397
       Soon Oh Park, Byoung Jae Bae, Dong Chul Yoo,
       U-In Chung

    13.1. An Introduction to FRAM ............................. 397
          13.1.1. 1T1C and 2T2C-Type FRAM ..................... 398
          13.1.2. Cell Operation and Sensing Scheme of
                  Capacitor-Type FRAM
    13.2. Ferroelectric Capacitors ............................ 401
          13.2.1. Ferroelectric Oxides ........................ 401
          13.2.2. Fatigue ..................................... 402
          13.2.3. Retention ................................... 403
                  13.2.3.1. Crystallinity of PZT Film ......... 406
                  13.2.3.2. The MOCVD Deposition Process ...... 406
                  13.2.3.3. Perovskite Oxide Electrode ........ 407
    13.3. Cell Structures ..................................... 408
          13.3.1. CUB Structure ............................... 408
          13.3.2. COB Structure ............................... 410
    13.4. High-Density FRAM ................................... 410
          13.4.1. Area Scaling ................................ 410
          13.4.2. Voltage Scaling ............................. 412
          13.4.3. 3-D Capacitor Structure ..................... 423
                  13.4.3.1. Limitation of Planar
                            Capacitor ......................... 413
                  13.4.3.2. Demonstration of a 3-D
                            Capacitor ......................... 413
    13.5. Summary and Conclusions ............................. 417
    References ................................................ 417

14. Magnetoresistive Random Access Memory ..................... 419
       Michael C.Caidis

    14.1. Magnetoresistive Random Access Memory (MRAM) ........ 419
    14.2. Basic MRAM .......................................... 420
    14.3. MTJ MRAM ............................................ 422
          14.3.1. Antiferromagnet ............................. 426
          14.3.2. Reference Layer ............................. 427
          14.3.3. Tunnel Barrier .............................. 427
          14.3.4. Free Layer .................................. 428
          14.3.5. Substrate ................................... 428
          14.3.6. Seed Layer .................................. 428
          14.3.7. Cap Layer ................................... 429
          14.3.8. Hard Mask ................................... 429
    14.4. MRAM Cell Structure and Circuit Design .............. 429
          14.4.1. Writing the Bits ............................ 429
          14.4.2. Reading the Bits ............................ 433
          14.4.3. MRAM Processing Technology and.
                  Integration ................................. 436
                  14.4.3.1. Process Steps ..................... 437
    14.5. MRAM Reliability .................................... 439
          14.5.1. Electromigration ............................ 439
          14.5.2. Tunnel Barrier Dielectrics .................. 440
          14.5.3. BEOLThermal Budget .......................... 440
          14.5.4. Film Adhesion ............................... 441
    14.6. The Future of MRAM .................................. 441
    References ................................................ 443

15. Phase-Change Memories ..................................... 447
       Andrea L.Lacaita and Dirk J.Wouters

    15.1. Introduction ........................................ 447
          15.1.1. The Non-Volatile Memory Market, Flash
                  Memory Scaling, and the Need for New
                  Memories .................................... 447
          15.1.2. PCM Memories ................................ 448
    15.2. Basic Operation of the Phase-Change Memory Cell ..... 449
          15.2.1. Memory Element and Basic Switching
                  Characteristics ............................. 449
          15.2.2. SET and RESET Programming Characteristics ... 452
    15.3. Phase-Change Memory Materials ....................... 453
          15.3.1. The Chalcogenide Phase-Change Materials:
                  General Characteristics ..................... 453
                  15.3.1.1. The Pseudo-Binary GeTe-Sb2Te3
                            Compositions ...................... 454
                  15.3.1.2. Compositions Based on the
                            Sb2Te3o "Eutectic" Compound ....... 454
                  15.3.1.3. Other Material Compositions ....... 455
                  15.3.1.4. N- or O-Doped GST ................. 455
          15.3.2. Material Structure .......................... 455
                  15.3.2.1. Long-Range Order: Crystalline
                            State in GST and Doped Sb-Te ...... 455
                  15.3.2.2. Short-Range Order in
                            Crystalline versus Amorphous
                            State ............................. 455
          15.3.3. Specific Properties Relevant to PCM ......... 457
    15.4. Physics and Modeling of PCM ......................... 458
          15.4.1. Amorphization and Crystallization
                  Processes ................................... 458
          15.4.2. Band-Structure and Transport Model .......... 459
          15.4.3. Modeling of the SET and RESET Switching
                  Phenomena ................................... 462
          15.4.4. Transient Behavior .......................... 463
    15.5. PCM Integration and Cell Structures ................. 464
          15.5.1. PCM Cell Components ......................... 464
          15.5.2. Integration Aspects ......................... 466
          15.5.3. PCM Cell Optimization ....................... 467
                  15.5.3.1. Concentrating the Volume of
                            Joule Heating ..................... 467
                  15.5.3.2. Improving the Thermal
                            Resistance ........................ 467
    15.6. Reliability ......................................... 469
          15.6.1. Introduction ................................ 469
          15.6.2. Retention for PCM: Thermal Stability ........ 469
          15.6.3. Cycling and Failure Modes ................... 470
          15.6.4. Read and Program Disturbs ................... 472
    15.7. Scaling of Phase-Change Memories .................... 472
          15.7.1. Temperature Profile Distributions ........... 472
          15.7.2. Scaling of the Dissipated Power and
                  Reset Current ............................... 473
          15.7.3. Voltage Scaling ............................. 475
          I5.7.4. Cell Size Scaling ........................... 476
          15.7.5. Scaling and Cell Performance: Figure of
                  Merit for PCM ............................... 478
          15.7.6. Physical Limits of Scaling .................. 478
    15.8. Conclusions ......................................... 479
    References ................................................ 480

16. Memory Devices Based on Mass Transport in Solid
    Electrolytes .............................................. 485
       Michael N.Kozicki and Maria Mitkova

    16.1. Introduction ........................................ 485
    16.2. Solid Electrolytes .................................. 486
          16.2.1. Transport in Solid Electrolytes ............. 486
          16.2.2. Major Inorganic Solid Electrolytes .......... 488
          16.2.3. Chakogenide Glasses as Electrolytes ......... 490
          16.2.4. The Nanostructure of Ternary
                  Electrolytes ................................ 492
    16.3. Electrochemistry and Mass Transport ................. 494
          16.3.1. Electrochemical Cells for Mass Transport .... 494
          16.3.2. Electrodeposit Morphology ................... 497
          16.3.3. Growth Rate ................................. 500
          16.3.4. Charge, Mass, Volume, and Resistance ........ 501
    16.4. Memory Devices ...................................... 504
          16.4.1. Device Layout and Operation ................. 504
          16.4.2. Device Examples ............................. 506
          16.4.3. Technological Challenges and Future
                  Directions .................................. 511
    16.5. Conclusions ......................................... 513

References .................................................... 513

Index ......................................................... 517


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:19:32 2019. Размер: 32,442 bytes.
Посещение N 2154 c 10.02.2009