Scanning electron microscopy and x-ray microanalysis (New York, 2003). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаScanning electron microscopy and x-ray microanalysis / Goldstein J. et al. - New York: Plenum Press, 2003. - xix, 690 p.: ill. + 1 CD-ROM. - ISBN 978-0-306-47292-3
 

Место хранения: 031 | Институт катализа им. Г.К.Борескова CO РАН | Новосибирск

Оглавление / Contents
 
1. Introduction ................................................. 1

   1.1. Imaging Capabilities .................................... 2
   1.2. Structure Analysis ..................................... 10
   1.3. Elemental Analysis ..................................... 10
   1.4. Summary and Outline of This Book ....................... 17
   Appendix A. Overview of Scanning Electron Microscopy ........ 18
   Appendix B. Overview of Electron Probe X-Ray
               Microanalysis ................................... 19
   References .................................................. 20

2. The SEM and Its Modes of Operation .......................... 21

2.1. How the SEM Works ......................................... 21
     2.1.1. Functions of the SEM Subsystems .................... 21
            2.1.1.1. Electron Gun and Eenses Produce
                     a Small Electron Beam ..................... 22
            2.1.1.2. Deflection System Controls
                     Magnification ............................. 22
            2.1.1.3. Electron Detector Collects the
                     Signal .................................... 24
            2.1.1.4. Camera or Computer Records the
                     Image ..................................... 25
            2.1.1.5. Operator Controls ......................... 25
     2.1.2. SEM Imaging Modes .................................. 25
            2.1.2.1. Resolution Mode ........................... 27
            2.1.2.2. High-Current Mode ......................... 27
            2.1.2.3. Depth-of-Focus Mode ....................... 28
            2.1.2.4. Low-Voltage Mode .......................... 29
     2.1.3. Why Learn about Electron Optics? ................... 29
2.2. Electron Guns ............................................. 29
     2.2.1. Tungsten Hairpin Electron Guns ..................... 30
            2.2.1.1. Filament .................................. 30
            2.2.1.2. Grid Cap .................................. 31
            2.2.1.3. Anode ..................................... 31
            2.2.1.4. Emission Current and Beam Current.......... 32
            2.2.1.5. Operator Control of the Electron
                     Gun ....................................... 32
     2.2.2. Electron Gun Characteristics ....................... 33
            2.2.2.1. Electron Emission Current ................. 33
            2.2.2.2. Brightness ................................ 33
            2.2.2.3. Lifetime .................................. 34
            2.2.2.4. Source Size, Energy Spread,
                     Beam Stability ............................ 34
            2.2.2.5. Improved Electron Gun
                     Characteristics ........................... 34
     2.2.3. Lanthanum Hexaboride (LaB6) Electron Guns .......... 35
            2.2.3.1. Introduction .............................. 35
            2.2.3.2. Operation of the LaB6 Source .............. 36
     2.2.4. Field Emission Electron Guns ....................... 37
2.3. Electron Lenses ........................................... 40
     2.3.1. Making the Beam Smaller ............................ 40
            2.3.1.1. Electron Focusing ......................... 40
            2.3.1.2. Demagnification of the Beam ............... 41
     2.3.2. Lenses in SEMs ..................................... 42
            2.3.2.1. Condenser Lenses .......................... 42
            2.3.2.2. Objective Lenses .......................... 42
            2.3.2.3. Real and Virtual Objective
                     Apertures ................................. 44
     2.3.3. Operator Control of SEM Lenses ..................... 44
            2.3.3.1. Effect of Aperture Size ................... 45
            2.3.3.2. Effect of Working Distance ................ 45
            2.3.3.3. Effect of Condenser Lens Strength ......... 46
     2.3.4. Gaussian Probe Diameter ............................ 47
     2.3.5. Lens Aberrations ................................... 48
            2.3.5.1. Spherical Aberration ...................... 48
            2.3.5.2. Aperture Diffraction ...................... 49
            2.3.5.3. Chromatic Aberration ...................... 50
            2.3.5.4. Astigmatism ............................... 51
            2.3.5.5. Aberrations in the Objective Lens ......... 53
2.4. Electron Probe Diameter versus Electron Probe
     Current ................................................... 54
     2.4.1. Calculation of dmin and imax ........................ 54
            2.4.1.1. Minimum Probe Size ........................ 54
            2.4.1.2. Minimum Probe Size at 10-30 kV ............ 54
            2.4.1.3. Maximum Probe Current at 10-30 kV ......... 55
            2.4.1.4. Low-Voltage Operation ..................... 55
            2.4.1.5. Graphical Summary ......................... 56
     2.4.2. Performance in the SEM Modes ....................... 56
            2.4.2.1. Resolution Mode ........................... 56
            2.4.2.2. High-Current Mode ......................... 58
            2.4.2.3. Depth-of-Focus Mode ....................... 59
            2.4.2.4. Low-Voltage SEM ........................... 59
            2.4.2.5. Environmental Barriers to
                     High-Resolution Imaging ................... 59
     References ................................................ 60

3. Electron Beam-Specimen Interactions ......................... 61

3.1. The Story So Far .......................................... 61
3.2. The Beam Enters the Specimen .............................. 61
3.3. The Interaction Volume .................................... 65
     3.3.1. Visualizing the Interaction Volume ................. 65
     3.3.2. Simulating the Interaction Volume .................. 67
     3.3.3. Influence of Beam and Specimen Parameters on
            the Interaction Volume ............................. 68
            3.3.3.1. Influence of Beam Energy on the
                     Interaction Volume ........................ 68
            3.3.3.2. Influence of Atomic Number on the
                     Interaction Volume ........................ 69
            3.3.3.3. Influence of Specimen Surface Tilt
                     on the Interaction Volume ................. 71
     3.3.4. Electron Range: A Simple Measure of the
            Interaction Volume ................................. 72
            3.3.4.1. Introduction .............................. 72
            3.3.4.2. The Electron Range at Low Beam
                     Energy .................................... 73
3.4. Imaging Signals from the Interaction Volume ............... 75
     3.4.1. Backscattered Electrons ............................ 75
            3.4.1.1. Atomic Number Dependence of BSE ........... 75
            3.4.1.2. Beam Energy Dependence of BSE ............. 77
            3.4.1.3. Tilt Dependence of BSE .................... 79
            3.4.1.4. Angular Distribution of BSE ............... 80
            3.4.1.5. Energy Distribution of BSE ................ 82
            3.4.1.6. Lateral Spatial Distribution of BSE ....... 84
            3.4.1.7. Sampling Depth of BSE ..................... 86
     3.4.2. Secondary Electrons ................................ 88
            3.4.2.1. Definition and Origin of SE ............... 88
            3.4.2.2. SE Yield with Primary Beam Energy ......... 89
            3.4.2.3. SE Energy Distribution .................... 91
            3.4.2.4. Range and Escape Depth of SE .............. 91
            3.4.2.5. Relative Contributions of SE1 and
                     SE2 ....................................... 93
            3.4.2.6. Specimen Composition Dependence
                     of SE ..................................... 95
            3.4.2.7. Specimen Tilt Dependence of SE ............ 96
            3.4.2.8. Angular Distribution of SE ................ 97
     References ................................................ 97

4. Image Formation and Interpretation .......................... 99

4.1. The Story So Far .......................................... 99
4.2. The Basic SEM Imaging Process ............................. 99
     4.2.1. Scanning Action ................................... 101
     4.2.2. Image Construction (Mapping) ...................... 103
            4.2.2.1. Line Scans ............................... 103
            4.2.2.2. Image (Area) Scanning .................... 104
            4.2.2.3. Digital Imaging: Collection and
                     Display .................................. 107
     4.2.3. Magnification ..................................... 108
     4.2.4. Picture Element (Pixel) Size ...................... 110
     4.2.5. Low-Magnification Operation ....................... 114
     4.2.6. Depth of Field (Focus) ............................ 114
     4.2.7. Image Distortion .................................. 118
            4.2.7.1. Projection Distortion: Gnomonic
                     Projection ............................... 118
            4.2.7.2. Projection Distortion: Image
                     Foreshortening ........................... 119
            4.2.7.3. Scan Distortion: Pathological
                     Defects .................................. 123
            4.2.7.4. Moire Effects ............................ 125
4.3. Detectors ................................................ 125
     4.3.1. Introduction ...................................... 125
     4.3.2. Electron Detectors ................................ 127
            4.3.2.1. Everhart-Thornley Detector ............... 128
            4.3.2.2. "Through-the-Lens" (TTL) Detector ........ 132
            4.3.2.3. Dedicated Backscattered Electron
                     Detectors ................................ 133
4.4. The Roles of the Specimen and Detector in
     Contrast Formation ....................................... 139
     4.4.1. Contrast .......................................... 139
     4.4.2. Compositional (Atomic Number) Contrast ............ 141
            4.4.2.1. Introduction ............................. 141
            4.4.2.2. Compositional Contrast with
                     Backscattered Electrons .................. 141
     4.4.3. Topographic Contrast .............................. 145
            4.4.3.1. Origins of Topographic Contrast .......... 146
            4.4.3.2. Topographic Contrast with the
                     Everhart-Thornley Detector ............... 147
            4.4.3.3. Light-Optical Analogy .................... 151
            4.4.3.4. Interpreting Topographic Contrast
                     with Other Detectors ..................... 158
4.5. Image Quality ............................................ 173
4.6. Image Processing for the Display of Contrast
     Information .............................................. 178
     4.6.1. The Signal Chain .................................. 178
     4.6.2. The Visibility Problem ............................ 180
     4.6.3. Analog and Digital Image Processing ............... 182
     4.6.4. Basic Digital Image Processing .................... 184
            4.6.4.1. Digital Image Enhancement ................ 187
            4.6.4.2. Digital Image Measurements ............... 192
     References ............................................... 192

5. Special Topics in Scanning Electron Microscopy ............. 195

5.1. High-Resolution Imaging .................................. 195
     5.1.1. The Resolution Problem ............................ 195
     5.1.2. Achieving High Resolution at High Beam
            Energy ............................................ 197
     5.1.3. High-Resolution Imaging at Low Voltage ............ 201
5.2. STEM-in-SEM: High Resolution for the Special Case
     of Thin Specimens ........................................ 203
5.3. Surface Imaging at Low Voltage ........................... 207
5.4. Making Dimensional Measurements in the SEM ............... 209
5.5. Recovering the Third Dimension: Stereomicroscopy ......... 212
     5.5.1. Qualitative Stereo Imaging and Presentation ....... 212
     5.5.2. Quantitative Stereo Microscopy .................... 217
5.6. Variable-Pressure and Environmental SEM .................. 220
     5.6.1. Current Instruments ............................... 221
     5.6.2. Gas in the Specimen Chamber ....................... 222
            5.6.2.1. Units of Gas Pressure .................... 222
            5.6.2.2. The Vacuum System ........................ 222
     5.6.3. Electron Interactions with Gases .................. 225
     5.6.4. The Effect of the Gas on Charging ................. 231
     5.6.5. Imaging in the ESEM and the VPSEM ................. 236
     5.6.6. X-Ray Microanalysis in the Presence of
            a Gas ............................................. 241
5.7. Special Contrast Mechanisms .............................. 242
     5.7.1. Electric Fields ................................... 243
     5.7.2. Magnetic Fields ................................... 245
     5.7.1. Type 1 Magnetic Contrast .......................... 245
            5.7.2.2. Type 2 Magnetic Contrast ................. 247
     5.7.3. Crystallographic Contrast ......................... 247
5.8. Electron Backscatter Patterns ............................ 256
     5.8.1. Origin of EBSD Patterns ........................... 260
     5.8.2. Hardware for EBSD ................................. 262
     5.8.3. Resolution of EBSD ................................ 264
            5.8.3.1. Lateral Spatial Resolution ............... 264
            5.8.3.2. Depth Resolution ......................... 266
     5.8.4. Applications ...................................... 267
            5.8.4.1. Orientation Mapping ...................... 267
            5.8.4.2. Phase Identification ..................... 267
     References ............................................... 269

6. Generation of X-Rays in the SEM Specimen ................... 271

6.1. Continuum X-Ray Production (Bremsstrahlung)............... 271
6.2. Characteristic X-Ray Production .......................... 274
     6.2.1. Origin ............................................ 274
     6.2.2. Fluorescence Yield ................................ 275
     6.2.3. Electron Shells ................................... 276
     6.2.4. Energy-Level Diagram .............................. 277
     6.2.5. Electron Transitions .............................. 277
     6.2.6. Critical Ionization Energy ........................ 278
     6.2.7. Moseley's Law ..................................... 279
     6.2.8. Families of Characteristic Lines .................. 279
     6.2.9. Natural Width of Characteristic X-Ray Lines ....... 281
            6.2.10. Weights of Lines .......................... 282
            6.2.11. Cross Section for Inner Shell
                    Ionization ................................ 283
            6.2.12. X-Ray Production in Thin Foils ............ 284
            6.2.13. X-Ray Production in Thick Targets ......... 284
            6.2.14. X-Ray Peak-to-Background Ratio ............ 285
6.3. Depth ofX-Ray Production (X-Ray Range) ................... 286
     6.3.1. Anderson-Hasler X-Ray Range ....................... 286
     6.3.2. X-Ray Spatial Resolution .......................... 286
     6.3.3. Sampling Volume and Specimen Homogeneity .......... 288
     6.3.4. Depth Distribution of X-Ray Production,
            φ(pz) ............................................. 288
6.4. X-Ray Absorption ......................................... 289
     6.4.1. Mass Absorption Coefficient for an Element ........ 290
     6.4.2. Effect of Absorption Edge on Spectrum ............. 291
     6.4.3. Absorption Coefficient for Mixed-Element
            Absorbers ......................................... 291
6.5. X-Ray Fluorescence ....................................... 292
     6.5.1. Characteristic Fluorescence ....................... 293
     6.5.2. Continuum Fluorescence ............................ 294
     6.5.3. Range of Fluorescence Radiation ................... 295
     References ............................................... 295

7. X-Ray Spectral Measurement: EDS and WDS .................... 297

7.1. Introduction ............................................. 297
7.2. Energy-Dispersive X-Ray Spectrometer ..................... 297
     7.2.1. Operating Principles .............................. 297
            9.8.4.5. Trace Element Analysis ................... 446
            9.8.4.6. Trace Element Analysis
                     Geochronologic Applications .............. 448
            9.8.4.7. Biological and Organic Specimens ......... 449
     References ............................................... 449

10.Special Topics in Electron Beam X-Ray Microanalysis ........ 453

10.1.Introduction ............................................. 453
10.2.Thin Film on a Substrate ................................. 454
10.3.Particle Analysis ........................................ 462
     10.3.1.Particle Mass Effect .............................. 463
     10.3.2.Particle Absorption Effect ........................ 463
     10.3.3.Particle Fluorescence Effect ...................... 464
     10.3.4.Particle Geometric Effects ........................ 465
     10.3.5.Corrections for Particle Geometric Effects ........ 466
            10.3.5.1.The Consequences of Ignoring
                     Particle Effects ......................... 466
            10.3.5.2.Normalization ............................ 466
            10.3.5.3.Critical Measurement Issues for
                     Particles ................................ 468
            10.3.5.4.Advanced Quantitative Methods for
                     Particles ................................ 470
10.4.Rough Surfaces ........................................... 476
     10.4.1.Introduction ...................................... 476
     10.4.2.Rough Specimen Analysis Strategy .................. 479
            10.4.2.1.Reorientation ............................ 479
            10.4.2.2.Normalization ............................ 479
            10.4.2.3.Peak-to-Background Method ................ 479
10.5.Beam-Sensitive Specimens (Biological, Polymeric) ......... 480
     10.5.1.Thin-Section Analysis ............................. 480
     10.5.2.Bulk Biological and Organic Specimens ............. 483
10.6.X-Ray Mapping ............................................ 485
     10.6.1.Relative Merits of WDS and EDS for Mapping ........ 486
     10.6.2.Digital Dot Mapping ............................... 487
     10.6.3.Gray-Scale Mapping ................................ 488
            10.6.3.1.The Need for Scaling in Gray-Scale
                     Mapping .................................. 489
            10.6.3.2.Artifacts in X-Ray Mapping ............... 491
     10.6.4.Compositional Mapping ............................. 492
            10.6.4.1.Principles of Compositional
                     Mapping .................................. 492
            10.6.4.2.Advanced Spectrum Collection
                     Strategies for Compositional
                     Mapping .................................. 494
     10.6.5.The Use of Color in Analyzing and
            Presenting X-Ray Maps ............................. 497
            10.6.5.1.Primary Color Superposition .............. 497
            10.6.5.2.Pseudocolor Scales ....................... 497
10.7.Light Element Analysis ................................... 499
     10.7.1.Optimization of Light Element X-Ray
            Generation ........................................ 499
     10.7.2.X-Ray Spectrometry of the Light Elements .......... 503
            10.7.2.1.Si EDS ................................... 503
            10.7.2.2.WDS ...................................... 507
     10.7.3.Special Measurement Problems for the Light
            Elements .......................................... 511
            10.7.3.1.Contamination ............................ 511
            10.7.3.2.Overvoltage Effects ...................... 512
                     10.7.3.3.Absorption Effects .............. 514
     10.7.4.Light Element Quantification ...................... 515
10.8.Low-Voltage Microanalysis ................................ 518
     10.8.1."Low-Voltage" versus "Conventional"
            Microanalysis ..................................... 518
     10.8.2.X-Ray Production Range ............................ 519
            10.8.2.1.Contribution of the Beam Size to
                     the X-Ray Analytical Resolution .......... 520
            10.8.2.2.A Consequence of the X-Ray Range
                     under Low-Voltage Conditions ............. 523
     10.8.3.X-Ray Spectrometry in Low-Voltage
            Microanalysis ..................................... 525
            10.8.3.1.The Oxygen and Carbon Problem ............ 526
            10.8.3.2.Quantitative X-Ray Microanalysis
                     at Low Voltage ........................... 528
10.9.Report of Analysis ....................................... 531
References .................................................... 535

11.Specimen Preparation of Hard Materials: Metals,
   Ceramics, Rocks, Minerals, Microelectronic and
   Packaged Devices, Particles, and Fibers .................... 537

11.1.Metals ................................................... 537
     11.1.1.Specimen Preparation for Surface Topography ....... 537
     11.1.2.Specimen Preparation for Microstructural and
            Microchemical Analysis ............................ 538
            11.1.2.1.Initial Sample Selection and
                     Specimen Preparation Steps ............... 538
            11.1.2.2.Final Polishing Steps .................... 539
            11.1.2.3.Preparation for Microanalysis ............ 540
11.2.Ceramics and Geological Samples .......................... 541
     11.2.1.Initial Specimen Preparation: Topography
            and Microstructure ................................ 542
     11.2.2.Mounting and Polishing for Microstructural
            and Microchemical Analysis ........................ 542
     11.2.3.Final Specimen Preparation for
            Microstructural and Microchemical Analysis ........ 542
11.3.Microelectronics and Packages ............................ 543
     11.3.1.Initial Specimen Preparation ...................... 543
     11.3.2.Polishing ......................................... 544
     11.3.3.Final Preparation ................................. 545
11.4.Imaging of Semiconductors ................................ 545
     11.4.1.Voltage Contrast .................................. 546
     11.4.2.Charge Collection ................................. 546
11.5.Preparation for Electron Diffraction in the SEM .......... 547
     11.5.1.Channeling Patterns and Channeling Contrast ....... 547
     11.5.2.Electron Backscatter Diffraction .................. 547
11.6.Special Techniques ....................................... 551
     11.6.1.Plasma Cleaning ................................... 551
     11.6.2.Focused-Ion-Beam Sample Preparation for SEM ....... 553
            11.6.2.1.Application of FIB for
                     Semiconductors ........................... 554
            11.6.2.2.Applications of FIB in Materials
                     Scie   		557
     11.7.1.Particle Substnce ................................. 555
11.7.Particles and Fibers rates and Supports .................. 559
            11.7.1.1.Bulk Particle Substrates ................. 559
            11.7.1.2.Thin Particle Supports ................... 560
     11.7.2.Particle Mounting Techniques ...................... 560
     11.7.3.Particles Collected on Filters .................... 562
     11.7.4.Particles in a Solid Matrix ....................... 563
     11.7.5.Transfer of Individual Particles .................. 563
References .................................................... 564

12.Specimen Preparation of Polymer Materials .................. 565

12.1.Introduction ............................................. 565
12.2.Microscopy of Polymers ................................... 565
     12.2.1.Radiation Effects ................................. 566
     12.2.2.Imaging Compromises ............................... 567
     12.2.3.Metal Coating Polymers for Imaging ................ 567
     12.2.4.X-Ray Microanalysis of Polymers ................... 570
12.3.Specimen Preparation Methods for Polymers ................ 570
     12.3.1.Simple Preparation Methods ........................ 571
     12.3.2.Polishing of Polymers ............................. 571
     12.3.3.Microtomy of Polymers ............................. 572
     12.3.4.Fracture of Polymer Materials ..................... 573
     12.3.5.Staining of Polymers .............................. 576
            12.3.5.1.Osmium Tetroxide and Ruthenium
                     Tetroxide ................................ 578
            12.3.5.2.Ebonite .................................. 578
            12.3.5.3.Chlorosulfonic Acid and
                     Phosphotungstic Acid ..................... 578
     12.3.6.Etching of Polymers ............................... 579
     12.3.7.Replication of Polymers ........................... 580
     12.3.8.Rapid Cooling and Drying Methods for
            Polymers .......................................... 580
            12.3.8.1.Simple Cooling Methods ................... 580
            12.3.8.2.Freeze-Drying ............................ 581
            12.3.8.3.Critical-Point Drying .................... 581
12.4.Choosing Specimen Preparation Methods .................... 581
     12.4.1.Fibers ............................................ 582
     12.4.2.Films and Membranes ............................... 582
     12.4.3.Engineering Resins and Plastics ................... 583
     12.4.4.Emulsions and Adhesives ........................... 587
12.5.Problem-Solving Protocol ................................. 588
12.6.Image Interpretation and Artifacts ....................... 589
     References ............................................... 590

13.Ambient-Temperature Specimen Preparation
   of Biological Material ..................................... 591

13.1.Introduction ............................................. 591
13.2.Preparative Procedures for the Structural
     SEM of Single Celluar Biological Particles,
     and Fibers ............................................... 592
     13.2.1.Particulate, Cellular, and Fibrous Organic
            Material .......................................... 592
     13.2.2.Dry Organic Particles and Fibers .................. 593
            13.2.2.1.Organic Particles and Fibers on
                     a Filter ................................. 594
            13.2.2.2.Organic Particles and Fibers
                     Entrained within a Filter ................ 594
            13.2.2.3.Organic Particulate Matter
                     Suspended in a Liquid .................... 594
            13.2.2.4.Manipulating Individual Organic
                     Particles ................................ 595
13.3.Preparative Procedures for the Structural
     Observation of Large Soft Biological Specimens ........... 596
     13.3.1.Introduction ...................................... 596
     13.3.2.Sample Handling before Fixation ................... 596
     13.3.3.Fixation .......................................... 596
     13.3.4.Microwave Fixation ................................ 597
     13.3.5.Conductive Infiltration ........................... 597
     13.3.6.Dehydration ....................................... 597
     13.3.7.Embedding ......................................... 602
     13.3.8.Exposing the Internal Contents of Bulk
            Specimens ......................................... 602
            13.3.8.1.Mechanical Dissection .................... 602
            13.3.8.2.High-Energy-Beam Surface Erosion ......... 602
            13.3.8.3.Chemical Dissection ...................... 603
            13.3.8.4.Surface Replicas and Corrosion
                     Casts .................................... 604
     13.3.9.Specimen Supports and Methods of Sample
            Attachment ........................................ 605
     13.3.10.Artifacts ........................................ 607
13.4.Preparative Procedures for the in Situ Chemical
     Analysis of Biological Specimens in the SEM .............. 607
     13.4.1.Introduction ...................................... 607
     13.4.2.Preparative Procedures for Elemental
            Analysis Using X-Ray Microanalysis ................ 608
            13.4.2.1.The Nature and Extent of the
                     Problem .................................. 608
            13.4.2.2.Types of Sample That May be
                     Analyzed ................................. 609
            13.4.2.3.The General Strategy for Sample
                     Preparation .............................. 609
            13.4.2.4.Criteria for Judging Satisfactory
                     Sample Preparation ....................... 610
            13.4.2.5.Fixation and Stabilization ............... 610
            13.4.2.6.Precipitation Techniques ................. 611
            13.4.2.7.Procedures for Sample Dehydration,
                     Embedding, and Staining .................. 611
            13.4.2.8.Specimen Supports ........................ 611
     13.4.3.Preparative Procedures for Localizing
            Molecules Using Histochemistry .................... 612
            13.4.3.1.Staining and Histochemical Methods ....... 612
            13.4.3.2.Atomic Number Contrast with
                     Backscattered Electrons .................. 613
     13.4.4.Preparative Procedures for Localizing
            Macromolecues Using Immunocytochemistry ........... 614
            13.4.4.1.Introduction ............................. 614
            13.4.4.2.The Antibody-Antigen Reaction ............ 614
            13.4.4.3.General Features of Specimen
                     Preparation for
                     Immunocytochemistry ...................... 615
            13.4.4.4.Imaging Procedures in the SEM ............ 616
     References ............................................... 618

14.Low-Temperature Specimen Preparation ....................... 621

14.1.Introduction ............................................. 621
14.2.The Properties of Liquid Water and Ice ................... 622
14.3.Conversion of Liquid Water to Ice ........................ 623
14.4.Specimen Pretreatment before Rapid (Quench)
     Cooling .................................................. 624
     14.4.1.Minimizing Sample Size and Specimen Holders ....... 624
     14.4.2.Maximizing Undercooling ........................... 626
     14.4.3.Altering the Nucleation Process ................... 626
     14.4.4.Artificially Depressing the Sample
            Freezing Point .................................... 626
     14.4.5.Chemical Fixation ................................. 626
14.5.Quench Cooling ........................................... 627
     14.5.1.Liquid Cryogens ................................... 627
     14.5.2.Solid Cryogens .................................... 628
     14.5.3.Methods for Quench Cooling ........................ 629
     14.5.4.Comparison of Quench Cooling Rates ................ 630
14.6.Low-Temperature Storage and Sample Transfer .............. 631
14.7.Manipulation of Frozen Specimens:
     Cryosectioning, Cryofracturing, and Cryoplaning .......... 631
     14.7.1.Cryosectioning .................................... 631
     14.7.2.Cryofracturing .................................... 633
     14.7.3.Cryopolishing or Cryoplaning ...................... 634
14.8.Ways to Handle Frozen Liquids within the Specimen ........ 635
     14.8.1.Frozen-Hydrated and Frozen Samples ................ 636
     14.8.2.Freeze-Drying ..................................... 637
            14.8.2.1.Physical Principles Involved in
                     Freeze-Drying ............................ 637
            14.8.2.2.Equipment Needed for Freeze-Drying ....... 638
            14.8.2.3.Artifacts Associated with
                     Freeze-Drying ............................ 639
     14.8.3.Freeze Substitution and Low-Temperature
            Embedding ......................................... 639
            14.8.3.1.Physical Principles Involved
                     in Freeze Substitution and
                     Low-Temperature Embedding ................ 639
            14.8.3.2.Equipment Needed for Freeze
                     Substitution and Low-Temperature
                     Embedding ................................ 640
14.9.Procedures for Hydrated Organic Systems .................. 640
14.10.Procedures for Hydrated Inorganic Systems ............... 641
14.11.Procedures for Nonaqueous Liquids ....................... 642
14.12.Imaging and Analyzing Samples at Low
      Temperatures ............................................ 643
      References .............................................. 644

15.Procedures for Elimination of Charging
   in Nonconducting Specimens ................................. 647

15.1.Introduction ............................................. 647
15.2.Recognizing Charging Phenomena ........................... 650
15.3.Procedures for Overcoming the Problems of Charging ....... 656
15.4.Vacuum Evaporation Coating ............................... 657
     15.4.1.High-Vacuum Evaporation Methods ................... 658
     15.4.2.Low-Vacuum Evaporation Methods .................... 661
15.5.Sputter Coating .......................................... 661
     15.5.1.Plasma Magnetron Sputter Coating .................. 662
     15.5.2.Ion Beam and Penning Sputtering ................... 664
15.6.High-Resolution Coating Methods .......................... 667
15.7.Coating for Analytical Studies ........................... 669
15.8.Coating Procedures for Samples Maintained
     at Low Temperatures ...................................... 669
15.9.Coating Thickness ........................................ 670
15.10.Damage and Artifacts on Coated Samples .................. 672
15.11.Summary of Coating Guidelines ........................... 673
References .................................................... 673

Index ......................................................... 675


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:19:30 2019. Размер: 38,890 bytes.
Посещение N 2067 c 03.02.2009